Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Performance Analysis of Finite Blocklength Transmissions Over Wiretap Fading Channels: An Average Information Leakage Perspective (2308.13184v3)

Published 25 Aug 2023 in cs.IT and math.IT

Abstract: Physical-layer security (PLS) is a promising technique to complement more traditional means of communication security in beyond-5G wireless networks. However, studies of PLS are often based on ideal assumptions such as infinite coding blocklengths or perfect knowledge of the wiretap link's channel state information (CSI). In this work, we study the performance of finite blocklength (FBL) transmissions using a new secrecy metric $\unicode{x2013}$ the average information leakage (AIL). We evaluate the exact and approximate AIL with Gaussian signaling and arbitrary fading channels, assuming that the eavesdropper's instantaneous CSI is unknown. We then conduct case studies that use artificial noise (AN) beamforming to analyze the AIL in both Rayleigh and Rician fading channels. The accuracy of the analytical expressions is verified through extensive simulations, and various insights regarding the impact of key system parameters on the AIL are obtained. Particularly, our results reveal that allowing a small level of AIL can potentially lead to significant reliability enhancements. To improve the system performance, we formulate and solve an average secrecy throughput (AST) optimization problem via both non-adaptive and adaptive design strategies. Our findings highlight the significance of blocklength design and AN power allocation, as well as the impact of their trade-off on the AST.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. Tatar Mamaghani, X. Zhou, N. Yang, A. L. Swindlehurst, and H. V. Poor, “On the information leakage performance of secure finite blocklength transmissions over Rayleigh fading channels,” submitted to IEEE Int. Conf. Commun., Denver, CO, USA, Jun. 2024, pp. 1–6.
  2. H. V. Poor and R. F. Schaefer, “Wireless physical layer security,” Proc. Natl. Acad. Sci. USA, vol. 114, no. 1, pp. 19–26, 2017.
  3. A. Mukherjee, “Physical-layer security in the Internet of Things: Sensing and communication confidentiality under resource constraints,” Proc. IEEE, vol. 103, no. 10, pp. 1747–1761, Oct. 2015.
  4. Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security: Technical challenges, recent advances, and future trends,” Proc. IEEE, vol. 104, no. 9, pp. 1727–1765, Sept. 2016.
  5. N. Wang, P. Wang, A. Alipour-Fanid, L. Jiao, and K. Zeng, “Physical-layer security of 5G wireless networks for IoT: Challenges and opportunities,” IEEE Internet Things J., vol. 6, no. 5, pp. 8169–8181, Oct. 2019.
  6. A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8, pp. 1355–1387, Oct. 1975.
  7. I. F. Akyildiz, A. Kak, and S. Nie, “6G and beyond: The future of wireless communications systems,” IEEE Access, vol. 8, pp. 133 995–134 030, 2020.
  8. Y. Zhu, Y. Hu, X. Yuan, M. C. Gursoy, H. V. Poor, and A. Schmeink, “Joint convexity of error probability in blocklength and transmit power in the finite blocklength regime,” IEEE Trans. Wirel. Commun., vol. 22, no. 4, pp. 2409–2423, Apr. 2022.
  9. M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency wireless communication: Tail, risk, and scale,” Proc. IEEE, vol. 106, no. 10, pp. 1834–1853, Oct. 2018.
  10. C. Bockelmann et al., “Massive machine-type communications in 5G: Physical and MAC-layer solutions,” IEEE Commun. Mag., vol. 54, no. 9, pp. 59–65, Sept. 2016.
  11. M. Tatar Mamaghani, A. Kuhestani, and K. K. Wong, “Secure two-way transmission via wireless-powered untrusted relay and external jammer,” IEEE Trans. Veh. Technol., vol. 67, no. 9, pp. 8451–8465, Sept. 2018.
  12. M. Tatar Mamaghani and Y. Hong, “Terahertz meets untrusted UAV-relaying: Minimum secrecy energy efficiency maximization via trajectory and communication co-design,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 4991–5006, May 2022.
  13. ——, “Joint trajectory and power allocation design for secure artificial noise aided UAV communications,” IEEE Trans. Veh. Technol., vol. 70, no. 3, pp. 2850–2855, Mar. 2021.
  14. Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307–2359, May 2010.
  15. P. Mary, J.-M. Gorce, A. Unsal, and H. V. Poor, “Finite blocklength information theory: What is the practical impact on wireless communications?” in Proc. IEEE Globecom Workshops, Washington, DC, USA, Dec. 2016.
  16. S. Thapliyal, R. Pandey, and C. Charan, “Analysis of NOMA based UAV assisted short-packet communication system and blocklength minimization for IoT applications,” Wirel. Netw., vol. 28, no. 6, pp. 2695–2712, May 2022.
  17. C. Feng and H. M. Wang, “Secure short-packet communications at the physical layer for 5G and beyond,” IEEE Commun. Stand. Mag., vol. 5, no. 3, pp. 96–102, Sept 2021.
  18. C. Li, C. She, N. Yang, and T. Q. Quek, “Secure transmission rate of short packets with queueing delay requirement,” IEEE Trans. Wirel. Commun., vol. 21, no. 1, pp. 203–218, Jan. 2022.
  19. H. M. Wang, Q. Yang, Z. Ding, and H. V. Poor, “Secure short-packet communications for mission-critical IoT applications,” IEEE Trans. Wirel. Commun., vol. 18, no. 5, pp. 2565–2578, May 2019.
  20. H. Ren, C. Pan, Y. Deng, M. Elkashlan, and A. Nallanathan, “Transmit power minimization for secure short-packet transmission in a mission-critical IoT scenario,” in Proc. IEEE Global Commun. Conf., Taipei, Taiwan, Dec. 2020, pp. 1–6.
  21. Y. Chen, Z. Xiang, X. Qiao, T. Zhang, and J. Zhang, “Secure short-packet communications in cognitive Internet of Things,” in Proc. IEEE 3rd Int. Conf. Electron. Commun. Eng., Xi’An, China, 2020, pp. 31–36.
  22. Y. Wang et al., “UAV-enabled secure communication with finite blocklength,” IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16 309–16 313, Dec. 2020.
  23. M. Tatar Mamaghani, X. Zhou, N. Yang, and A. L. Swindlehurst, “Secure short-packet transmission with aerial relaying: Blocklength and trajectory co-design,” in Proc. IEEE Global Commun. Conf., Kuala Lumpur, Malaysia, Dec. 2023, pp. 1–7.
  24. ——, “Secure short-packet communications via UAV-enabled mobile relaying: Joint resource optimization and 3D trajectory design,” IEEE Trans. Wirel. Commun. (early access), Dec. 2023.
  25. C. Feng, H. M. Wang, and H. V. Poor, “Reliable and secure short-packet communications,” IEEE Trans. Wirel. Commun., vol. 21, no. 3, pp. 1913–1926, Mar. 2022.
  26. W. Yang, R. F. Schaefer, and H. V. Poor, “Wiretap channels: Nonasymptotic fundamental limits,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4069–4093, July 2019.
  27. M. Iwamoto and K. Ohta, “Security notions for information theoretically secure encryptions,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Saint Petersburg, Russia, Jul./Aug. 2011, pp. 1777–1781.
  28. M. Bellare, S. Tessaro, and A. Vardy, “Semantic security for the wiretap channel,” in Annu. Cryptology Conf.   Springer, 2012, pp. 294–311.
  29. B. He and X. Zhou, “Secure on-off transmission design with channel estimation errors,” IEEE Trans. Inf. Forensics Secur., vol. 8, no. 12, pp. 1923–1936, Dec. 2013.
  30. A. Azevedo-Filho and R. D. Shachter, “Laplace’s method approximations for probabilistic inference in belief networks with continuous variables,” in Proc. Tenth Conf. Uncertainty Artif. Intell., San Francisco, CA, USA, 1994, pp. 28–36.
  31. S. Yan, X. Zhou, N. Yang, B. He, and T. D. Abhayapala, “Artificial-noise-aided secure transmission in wiretap channels with transmitter-side correlation,” IEEE Trans. Wirel. Commun., vol. 15, no. 12, pp. 8286–8297, Dec. 2016.
  32. N. Yang, M. Elkashlan, T. Q. Duong, J. Yuan, and R. Malaney, “Optimal transmission with artificial noise in MISOME wiretap channels,” IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2170–2181, Apr. 2016.
  33. X. Zhou and M. R. McKay, “Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 3831–3842, Oct. 2010.
  34. The MathWorks Inc., “Optimization toolbox version: 9.4 (r2022b),” Natick, Massachusetts, USA, 2022.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com