Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Image Quality Assessment via CLIP with Multiple Antonym-Prompt Pairs (2308.13094v1)

Published 24 Aug 2023 in cs.CV

Abstract: No reference image quality assessment (NR-IQA) is a task to estimate the perceptual quality of an image without its corresponding original image. It is even more difficult to perform this task in a zero-shot manner, i.e., without task-specific training. In this paper, we propose a new zero-shot and interpretable NRIQA method that exploits the ability of a pre-trained visionLLM to estimate the correlation between an image and a textual prompt. The proposed method employs a prompt pairing strategy and multiple antonym-prompt pairs corresponding to carefully selected descriptive features corresponding to the perceptual image quality. Thus, the proposed method is able to identify not only the perceptual quality evaluation of the image, but also the cause on which the quality evaluation is based. Experimental results show that the proposed method outperforms existing zero-shot NR-IQA methods in terms of accuracy and can evaluate the causes of perceptual quality degradation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Takamichi Miyata (3 papers)
Citations (4)