Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Easy attention: A simple attention mechanism for temporal predictions with transformers (2308.12874v3)

Published 24 Aug 2023 in cs.LG

Abstract: To improve the robustness of transformer neural networks used for temporal-dynamics prediction of chaotic systems, we propose a novel attention mechanism called easy attention which we demonstrate in time-series reconstruction and prediction. While the standard self attention only makes use of the inner product of queries and keys, it is demonstrated that the keys, queries and softmax are not necessary for obtaining the attention score required to capture long-term dependencies in temporal sequences. Through the singular-value decomposition (SVD) on the softmax attention score, we further observe that self attention compresses the contributions from both queries and keys in the space spanned by the attention score. Therefore, our proposed easy-attention method directly treats the attention scores as learnable parameters. This approach produces excellent results when reconstructing and predicting the temporal dynamics of chaotic systems exhibiting more robustness and less complexity than self attention or the widely-used long short-term memory (LSTM) network. We show the improved performance of the easy-attention method in the Lorenz system, a turbulence shear flow and a model of a nuclear reactor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Physica D: Nonlinear Phenomena 197, 101 (2004).
  2. S. Pan and K. Duraisamy, On the structure of time-delay embedding in linear models of non-linear dynamical systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 30, 073135 (2020a).
  3. A. Towne, O. T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis, Journal of Fluid Mechanics 847, 821–867 (2018).
  4. P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics 656, 5–28 (2010).
  5. S. Le Clainche and J. M. Vega, Higher order dynamic mode decomposition, SIAM Journal on Applied Dynamical Systems 16, 882 (2017).
  6. I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynamics 41, 309 (2005).
  7. B. O. Koopman and J. v. Neumann, Dynamical systems of continuous spectra, Proceedings of the National Academy of Sciences 18, 255 (1932).
  8. S. Pan and K. Duraisamy, Physics-informed probabilistic learning of linear embeddings of nonlinear dynamics with guaranteed stability, SIAM Journal on Applied Dynamical Systems 19, 480–509 (2020b).
  9. B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nature communications 9, 4950 (2018).
  10. M. A. Khodkar, P. Hassanzadeh, and A. Antoulas, A Koopman-based framework for forecasting the spatiotemporal evolution of chaotic dynamics with nonlinearities modeled as exogenous forcings (2019), arXiv:1909.00076 .
  11. G. Box and G. M. Jenkins, Time series analysis forecasting and control, 4th ed. (Wiley, 2008).
  12. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (MIT Press, 2016).
  13. S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Computation 9, 1735 (1997).
  14. S. Bai, J. Z. Kolter, and V. Koltun, An empirical evaluation of generic convolutional and recurrent networks for sequence modeling (2018), arXiv:1803.01271 .
  15. N. Geneva and N. Zabaras, Transformers for modeling physical systems, Neural Networks 146, 272 (2022).
  16. A. Solera-Rico, C. Sanmiguel Vila, and M. e. a. Gómez-López, β𝛽\betaitalic_β-variational autoencoders and transformers for reduced-order modelling of fluid flows, Nat Commun 15, 1361 (2024).
  17. N. Kitaev, Łukasz Kaiser, and A. Levskaya, Reformer: The efficient transformer (2020), arXiv:2001.04451 .
  18. T. Dao, Flashattention-2: Faster attention with better parallelism and work partitioning (2023), arXiv:2307.08691 .
  19. L. Chierchia, Kolmogorov–arnold–moser (kam) theory, in Encyclopedia of Complexity and Systems Science, edited by R. A. Meyers (Springer New York, New York, NY, 2009) p. 5064–5091.
  20. D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473  (2014).
  21. J. Moehlis, H. Faisst, and B. Eckhardt, A low-dimensional model for turbulent shear flows, New Journal of Physics 6, 56 (2004).
  22. E. N. Lorenz, Deterministic nonperiodic flow, Journal of Atmospheric Sciences 20, 130 (1963).
  23. J. Wayland, C. Coupette, and B. Rieck, Mapping the multiverse of latent representations (2024), arXiv:2402.01514 [cs.LG] .
  24. G. Locatelli, M. Mancini, and N. Todeschini, Generation iv nuclear reactors: Current status and future prospects, Energy Policy 61, 1503–1520 (2013).
  25. I. Mezić, Operator is the model (2023), arXiv:2310.18516 [math.DS] .
  26. K. J. Palmer, Shadowing lemma for flows, Scholarpedia 4, 7918 (2009), revision #91761.
  27. J. Thickstun, The transformer model in equations, johnthickstun.com  (2020).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Marcial Sanchis-Agudo (1 paper)
  2. Yuning Wang (20 papers)
  3. Roger Arnau (4 papers)
  4. Luca Guastoni (9 papers)
  5. Jasmin Lim (1 paper)
  6. Karthik Duraisamy (61 papers)
  7. Ricardo Vinuesa (95 papers)

Summary

Easy Attention: A Simple Mechanism for Temporal Predictions with Transformers

The paper "Easy Attention: A Simple Attention Mechanism for Temporal Predictions with Transformers" introduces a novel attention mechanism called easy attention specifically designed to enhance the predictive capabilities of transformer neural networks in handling chaotic temporal-dynamics systems. The authors propose this new approach by challenging the traditional reliance on the self-attention mechanism, which involves the use of query-key-value pairs and the softmax\rm{softmax} operation to capture dependencies across temporal sequences.

Key Insights and Contributions

The primary contribution of this work is the easy-attention mechanism, which departs from conventional self-attention by treating attention scores as learnable parameters directly. This is based on the observations made through the singular value decomposition (SVD) of the softmax\rm{softmax} attention score. The paper suggests that traditional self-attention compresses the important contributions from both queries and keys in the space that the attention score spans, thereby possibly limiting its effectiveness in capturing long-term dependencies in temporal sequences.

The easy-attention mechanism offers several advantages:

  • Reduction in Complexity: By directly learning the attention scores without relying on keys, queries, and the softmax\rm{softmax} function, the approach simplifies the attention mechanism, potentially reducing computational overhead and simplifying the model architecture.
  • Enhanced Performance: The easy-attention model demonstrates robust performance when tested on various chaotic systems such as the Lorenz system, turbulence in shear flow models, and a nuclear reactor model. These tests indicate that the proposed mechanism can outperform traditional self-attention and LSTM models in terms of prediction accuracy and computational efficiency.

Implications and Future Directions

The practical implications of easy attention are significant, especially in fields that require handling and predicting complex dynamical behaviors, such as meteorology, finance, and advanced reactor safety simulations. The proposed mechanism could lead to more efficient models capable of handling high-dimensional and chaotic datasets, which are common in these domains.

Theoretically, the introduction of easy attention opens avenues for further exploration into the theoretical underpinnings of attention mechanisms. This could lead to a more profound understanding of how temporal dependencies are captured and represented within neural networks, potentially inspiring further innovations in machine learning architectures.

Future work could explore the following areas:

  • Broader Applications: The adaptability of easy attention to other types of neural network architectures beyond transformers, such as convolutional networks or hybrid models, could be investigated.
  • Integration with Operator Theory: As alluded to by the authors, integrating concepts from Koopman operator theory may enhance the interpretability and functionality of models using easy attention.
  • Optimization of Sparsity in Attention: Developing techniques to dynamically optimize the sparsity levels in the attention score matrix during training could yield further improvements in computational efficiency and model performance.

In summary, this paper presents a compelling modification to the transformer architecture, optimizing temporal prediction tasks, especially in chaotic systems. Easy attention shows promise in both simplifying the attention mechanism and enhancing predictive power, paving the way for more efficient and effective machine-learning models in various application areas.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com