Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Denoising Particle-In-Cell Data via Smoothness-Increasing Accuracy-Conserving Filters with Application to Bohm Speed Computation (2308.12807v2)

Published 24 Aug 2023 in math.NA and cs.NA

Abstract: The simulation of plasma physics is computationally expensive because the underlying physical system is of high dimensions, requiring three spatial dimensions and three velocity dimensions. One popular numerical approach is Particle-In-Cell (PIC) methods owing to its ease of implementation and favorable scalability in high-dimensional problems. An unfortunate drawback of the method is the introduction of statistical noise resulting from the use of finitely many particles. In this paper we examine the application of the Smoothness-Increasing Accuracy-Conserving (SIAC) family of convolution kernel filters as denoisers for moment data arising from PIC simulations. We show that SIAC filtering is a promising tool to denoise PIC data in the physical space as well as capture the appropriate scales in the Fourier space. Furthermore, we demonstrate how the application of the SIAC technique reduces the amount of information necessary in the computation of quantities of interest in plasma physics such as the Bohm speed.

Citations (2)

Summary

We haven't generated a summary for this paper yet.