Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Masked Feature Modelling: Feature Masking for the Unsupervised Pre-training of a Graph Attention Network Block for Bottom-up Video Event Recognition (2308.12673v2)

Published 24 Aug 2023 in cs.CV, cs.LG, and cs.MM

Abstract: In this paper, we introduce Masked Feature Modelling (MFM), a novel approach for the unsupervised pre-training of a Graph Attention Network (GAT) block. MFM utilizes a pretrained Visual Tokenizer to reconstruct masked features of objects within a video, leveraging the MiniKinetics dataset. We then incorporate the pre-trained GAT block into a state-of-the-art bottom-up supervised video-event recognition architecture, ViGAT, to improve the model's starting point and overall accuracy. Experimental evaluations on the YLI-MED dataset demonstrate the effectiveness of MFM in improving event recognition performance.

Summary

We haven't generated a summary for this paper yet.