Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An All Deep System for Badminton Game Analysis (2308.12645v2)

Published 24 Aug 2023 in cs.CV

Abstract: The CoachAI Badminton 2023 Track1 initiative aim to automatically detect events within badminton match videos. Detecting small objects, especially the shuttlecock, is of quite importance and demands high precision within the challenge. Such detection is crucial for tasks like hit count, hitting time, and hitting location. However, even after revising the well-regarded shuttlecock detecting model, TrackNet, our object detection models still fall short of the desired accuracy. To address this issue, we've implemented various deep learning methods to tackle the problems arising from noisy detectied data, leveraging diverse data types to improve precision. In this report, we detail the detection model modifications we've made and our approach to the 11 tasks. Notably, our system garnered a score of 0.78 out of 1.0 in the challenge. We have released our source code in Github https://github.com/jean50621/Badminton_Challenge

Summary

We haven't generated a summary for this paper yet.