Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability threshold of the 2D Couette flow in a homogeneous magnetic field using symmetric variables (2308.12589v1)

Published 24 Aug 2023 in math.AP and physics.flu-dyn

Abstract: We consider a 2D incompressible and electrically conducting fluid in the domain $\mathbb{T}\times\mathbb{R}$. The aim is to quantify stability properties of the Couette flow $(y,0)$ with a constant homogenous magnetic field $(\beta,0)$ when $|\beta|>1/2$. The focus lies on the regime with small fluid viscosity $\nu$, magnetic resistivity $\mu$ and we assume that the magnetic Prandtl number satisfies $\mu2\lesssim\mathrm{Pr}_{\mathrm{m}}=\nu/\mu\leq 1$. We establish that small perturbations around this steady state remain close to it, provided their size is of order $\varepsilon\ll\nu{2/3}$ in $HN$ with $N$ large enough. Additionally, the vorticity and current density experience a transient growth of order $\nu{-1/3}$ while converging exponentially fast to an $x$-independent state after a time-scale of order $\nu{-1/3}$. The growth is driven by an inviscid mechanism, while the subsequent exponential decay results from the interplay between transport and diffusion, leading to the dissipation enhancement. A key argument to prove these results is to reformulate the system in terms of symmetric variables, inspired by the study of inhomogeneous fluid, to effectively characterize the system's dynamic behavior.

Citations (8)

Summary

We haven't generated a summary for this paper yet.