Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multiobjective continuation method to compute the regularization path of deep neural networks (2308.12044v5)

Published 23 Aug 2023 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: Sparsity is a highly desired feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models (due to the smaller number of relevant features), and robustness. For linear models, it is well known that there exists a \emph{regularization path} connecting the sparsest solution in terms of the $\ell1$ norm, i.e., zero weights and the non-regularized solution. Very recently, there was a first attempt to extend the concept of regularization paths to DNNs by means of treating the empirical loss and sparsity ($\ell1$ norm) as two conflicting criteria and solving the resulting multiobjective optimization problem for low-dimensional DNN. However, due to the non-smoothness of the $\ell1$ norm and the high number of parameters, this approach is not very efficient from a computational perspective for high-dimensional DNNs. To overcome this limitation, we present an algorithm that allows for the approximation of the entire Pareto front for the above-mentioned objectives in a very efficient manner for high-dimensional DNNs with millions of parameters. We present numerical examples using both deterministic and stochastic gradients. We furthermore demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization. To the best of our knowledge, this is the first algorithm to compute the regularization path for non-convex multiobjective optimization problems (MOPs) with millions of degrees of freedom.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Augustina C. Amakor (2 papers)
  2. Konstantin Sonntag (7 papers)
  3. Sebastian Peitz (52 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com