Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements (2308.11970v1)

Published 23 Aug 2023 in cs.DM, cs.DS, and cs.LO

Abstract: The $k$-dimensional Weisfeiler-Leman ($k$-WL) algorithm is a simple combinatorial algorithm that was originally designed as a graph isomorphism heuristic. It naturally finds applications in Babai's quasipolynomial time isomorphism algorithm, practical isomorphism solvers, and algebraic graph theory. However, it also has surprising connections to other areas such as logic, proof complexity, combinatorial optimization, and machine learning. The algorithm iteratively computes a coloring of the $k$-tuples of vertices of a graph. Since F\"urer's linear lower bound [ICALP 2001], it has been an open question whether there is a super-linear lower bound for the iteration number for $k$-WL on graphs. We answer this question affirmatively, establishing an $\Omega(n{k/2})$-lower bound for all $k$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.