Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-quality Image Dehazing with Diffusion Model (2308.11949v2)

Published 23 Aug 2023 in cs.CV and cs.AI

Abstract: Image dehazing is quite challenging in dense-haze scenarios, where quite less original information remains in the hazy image. Though previous methods have made marvelous progress, they still suffer from information loss in content and color in dense-haze scenarios. The recently emerged Denoising Diffusion Probabilistic Model (DDPM) exhibits strong generation ability, showing potential for solving this problem. However, DDPM fails to consider the physics property of dehazing task, limiting its information completion capacity. In this work, we propose DehazeDDPM: A DDPM-based and physics-aware image dehazing framework that applies to complex hazy scenarios. Specifically, DehazeDDPM works in two stages. The former stage physically models the dehazing task with the Atmospheric Scattering Model (ASM), pulling the distribution closer to the clear data and endowing DehazeDDPM with fog-aware ability. The latter stage exploits the strong generation ability of DDPM to compensate for the haze-induced huge information loss, by working in conjunction with the physical modelling. Extensive experiments demonstrate that our method attains state-of-the-art performance on both synthetic and real-world hazy datasets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. E. J. McCartney, “Optics of the atmosphere: scattering by molecules and particles,” New York, 1976.
  2. S. G. Narasimhan and S. K. Nayar, “Vision and the atmosphere,” International journal of computer vision, vol. 48, no. 3, pp. 233–254, 2002.
  3. C.-L. Guo, Q. Yan, S. Anwar, R. Cong, W. Ren, and C. Li, “Image dehazing transformer with transmission-aware 3d position embedding,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5812–5820.
  4. D. Berman, S. Avidan et al., “Non-local image dehazing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 1674–1682.
  5. K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 12, pp. 2341–2353, 2010.
  6. R. Fattal, “Dehazing using color-lines,” ACM Transactions on Graphics (TOG), vol. 34, no. 1, pp. 1–14, 2014.
  7. ——, “Single image dehazing,” ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1–9, 2008.
  8. B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng, “AOD-Net: All-in-one dehazing network,” in Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4770–4778.
  9. X. Liu, Y. Ma, Z. Shi, and J. Chen, “GridDehazeNet: Attention-based multi-scale network for image dehazing,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 7314–7323.
  10. T. Guo, X. Li, V. Cherukuri, and V. Monga, “Dense scene information estimation network for dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019, pp. 0–0.
  11. H. Dong, J. Pan, L. Xiang, Z. Hu, X. Zhang, F. Wang, and M.-H. Yang, “Multi-scale boosted dehazing network with dense feature fusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 2157–2167.
  12. H. Wu, Y. Qu, S. Lin, J. Zhou, R. Qiao, Z. Zhang, Y. Xie, and L. Ma, “Contrastive learning for compact single image dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10 551–10 560.
  13. H. Yu, N. Zheng, M. Zhou, J. Huang, Z. Xiao, and F. Zhao, “Frequency and spatial dual guidance for image dehazing,” 2022.
  14. L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning research, vol. 9, no. 11, 2008.
  15. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in International Conference on Machine Learning.   PMLR, 2015, pp. 2256–2265.
  16. Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data distribution,” Advances in Neural Information Processing Systems, vol. 32, 2019.
  17. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  18. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in International Conference on Machine Learning.   PMLR, 2021, pp. 8162–8171.
  19. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.
  20. C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi, “Image super-resolution via iterative refinement,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
  21. J. Whang, M. Delbracio, H. Talebi, C. Saharia, A. G. Dimakis, and P. Milanfar, “Deblurring via stochastic refinement,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 293–16 303.
  22. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.
  23. Q. Zhu, J. Mai, and L. Shao, “Single image dehazing using color attenuation prior.” in BMVC.   Citeseer, 2014.
  24. C. Chen, M. N. Do, and J. Wang, “Robust image and video dehazing with visual artifact suppression via gradient residual minimization,” in Proceedings of the European Conference on Computer Vision.   Springer, 2016, pp. 576–591.
  25. J. Zhang, Y. Cao, S. Fang, Y. Kang, and C. Wen Chen, “Fast haze removal for nighttime image using maximum reflectance prior,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 7418–7426.
  26. B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “DehazeNet: An end-to-end system for single image haze removal,” IEEE Transactions on Image Processing, vol. 25, no. 11, pp. 5187–5198, 2016.
  27. W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang, “Single image dehazing via multi-scale convolutional neural networks,” in Proceedings of the European Conference on Computer Vision.   Springer, 2016, pp. 154–169.
  28. H. Zhang and V. M. Patel, “Densely connected pyramid dehazing network,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3194–3203.
  29. R. Liu, X. Fan, M. Hou, Z. Jiang, Z. Luo, and L. Zhang, “Learning aggregated transmission propagation networks for haze removal and beyond,” IEEE transactions on neural networks and learning systems, vol. 30, no. 10, pp. 2973–2986, 2018.
  30. Y. Liu, J. Pan, J. Ren, and Z. Su, “Learning deep priors for image dehazing,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 2492–2500.
  31. C. Li, J. Guo, R. Cong, Y. Pang, and B. Wang, “Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior,” IEEE Transactions on Image Processing, vol. 25, no. 12, pp. 5664–5677, 2016.
  32. W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-H. Yang, “Gated fusion network for single image dehazing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3253–3261.
  33. Q. Deng, Z. Huang, C.-C. Tsai, and C.-W. Lin, “HardGAN: A haze-aware representation distillation gan for single image dehazing,” in Proceedings of the European Conference on Computer Vision.   Springer, 2020, pp. 722–738.
  34. X. Qin, Z. Wang, Y. Bai, X. Xie, and H. Jia, “FFA-Net: Feature fusion attention network for single image dehazing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 11 908–11 915.
  35. H. Yu, J. Huang, Y. Liu, Q. Zhu, M. Zhou, and F. Zhao, “Source-free domain adaptation for real-world image dehazing,” in Proceedings of the 30th ACM International Conference on Multimedia, 2022, p. 6645–6654.
  36. H. Liu, Z. Wu, L. Li, S. Salehkalaibar, J. Chen, and K. Wang, “Towards multi-domain single image dehazing via test-time training,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 5831–5840.
  37. Y. Zhou, Z. Chen, P. Li, H. Song, C. P. Chen, and B. Sheng, “Fsad-net: feedback spatial attention dehazing network,” IEEE transactions on neural networks and learning systems, 2022.
  38. G. Fan, M. Gan, B. Fan, and C. P. Chen, “Multiscale cross-connected dehazing network with scene depth fusion,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  39. Y. Zheng, J. Zhan, S. He, J. Dong, and Y. Du, “Curricular contrastive regularization for physics-aware single image dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 5785–5794.
  40. R.-Q. Wu, Z.-P. Duan, C.-L. Guo, Z. Chai, and C. Li, “Ridcp: Revitalizing real image dehazing via high-quality codebook priors,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22 282–22 291.
  41. A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves et al., “Conditional image generation with pixelcnn decoders,” Advances in neural information processing systems, vol. 29, 2016.
  42. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114, 2013.
  43. D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolutions,” Advances in neural information processing systems, vol. 31, 2018.
  44. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Advances in Neural Information Processing Systems, vol. 63, 2014.
  45. H. Li, J. Li, D. Zhao, and L. Xu, “Dehazeflow: Multi-scale conditional flow network for single image dehazing,” in Proceedings of the 29th ACM International Conference on Multimedia, 2021, pp. 2577–2585.
  46. Y. Dong, Y. Liu, H. Zhang, S. Chen, and Y. Qiao, “Fd-gan: Generative adversarial networks with fusion-discriminator for single image dehazing,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, 2020, pp. 10 729–10 736.
  47. M. Fu, H. Liu, Y. Yu, J. Chen, and K. Wang, “DW-GAN: A discrete wavelet transform gan for nonhomogeneous dehazing,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 203–212.
  48. P. Sharma, P. Jain, and A. Sur, “Scale-aware conditional generative adversarial network for image dehazing,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 2355–2365.
  49. A. Kumar, M. Sanathra, M. Khare, and V. Khare, “Orthogonal transform based generative adversarial network for image dehazing,” arXiv preprint arXiv:2206.01743, 2022.
  50. A. Razavi, A. Van den Oord, and O. Vinyals, “Generating diverse high-fidelity images with vq-vae-2,” Advances in neural information processing systems, vol. 32, 2019.
  51. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved training of wasserstein gans,” Advances in neural information processing systems, vol. 30, 2017.
  52. T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018.
  53. J. Choi, S. Kim, Y. Jeong, Y. Gwon, and S. Yoon, “Ilvr: Conditioning method for denoising diffusion probabilistic models,” arXiv preprint arXiv:2108.02938, 2021.
  54. A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and L. Van Gool, “Repaint: Inpainting using denoising diffusion probabilistic models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11 461–11 471.
  55. O. Özdenizci and R. Legenstein, “Restoring vision in adverse weather conditions with patch-based denoising diffusion models,” arXiv preprint arXiv:2207.14626, 2022.
  56. Z. Chen, Y. Wang, Y. Yang, and D. Liu, “PSD: Principled synthetic-to-real dehazing guided by physical priors,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp. 7180–7189.
  57. B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “Benchmarking single-image dehazing and beyond,” IEEE Transactions on Image Processing, vol. 28, no. 1, pp. 492–505, 2018.
  58. C. O. Ancuti, C. Ancuti, M. Sbert, and R. Timofte, “Dense haze: A benchmark for image dehazing with dense-haze and haze-free images,” in Proceedings of the IEEE International Conference on Image Processing, 2019, pp. 1014–1018.
  59. C. O. Ancuti, C. Ancuti, and R. Timofte, “NH-HAZE: An image dehazing benchmark with non-homogeneous hazy and haze-free images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 444–445.
  60. Y. Song and S. Ermon, “Improved techniques for training score-based generative models,” Advances in neural information processing systems, vol. 33, pp. 12 438–12 448, 2020.
  61. K. Deck and T. Bischoff, “Easing color shifts in score-based diffusion models,” arXiv preprint arXiv:2306.15832, 2023.
  62. T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image classification with convolutional neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 558–567.
  63. M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale update rule converge to a local nash equilibrium,” Advances in neural information processing systems, vol. 30, 2017.
  64. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 586–595.
  65. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE transactions on image processing, vol. 13, pp. 600–612, 2004.
  66. A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality assessment in the spatial domain,” IEEE Transactions on image processing, vol. 21, no. 12, pp. 4695–4708, 2012.
  67. A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely blind” image quality analyzer,” IEEE Signal processing letters, vol. 20, no. 3, pp. 209–212, 2012.
Citations (7)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com