Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The macroscopic finite-difference scheme and modified equations of the general propagation multiple-relaxation-time lattice Boltzmann model (2308.11882v1)

Published 23 Aug 2023 in math.NA, cs.NA, and math.AP

Abstract: In this paper, we first present the general propagation multiple-relaxation-time lattice Boltzmann (GPMRT-LB) model and obtain the corresponding macroscopic finite-difference (GPMFD) scheme on conservative moments. Then based on the Maxwell iteration method, we conduct the analysis on the truncation errors and modified equations (MEs) of the GPMRT-LB model and GPMFD scheme at both diffusive and acoustic scalings. For the nonlinear anisotropic convection-diffusion equation (NACDE) and Navier-Stokes equations (NSEs), we also derive the first- and second-order MEs of the GPMRT-LB model and GPMFD scheme. In particular, for the one-dimensional convection-diffusion equation (CDE) with the constant velocity and diffusion coefficient, we can develop a fourth-order GPMRT-LB (F-GPMRT-LB) model and the corresponding fourth-order GPMFD (F-GPMFD) scheme at the diffusive scaling. Finally, two benchmark problems, Gauss hill problem and Poiseuille flow in two-dimensional space, are used to test the GPMRT-LB model and GPMFD scheme, and it is found that the numerical results are not only in good agreement with corresponding analytical solutions, but also have a second-order convergence rate in space. Additionally, a numerical study on one-dimensional CDE also demonstrates that the F-GPMRT-LB model and F-GPMFD scheme can achieve a fourth-order accuracy in space, which is consistent with our theoretical analysis.

Summary

We haven't generated a summary for this paper yet.