Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Supervised learning for robust quantum control in composite-pulse systems (2308.11861v2)

Published 23 Aug 2023 in quant-ph

Abstract: In this work, we develop a supervised learning model for implementing robust quantum control in composite-pulse systems, where the training parameters can be either phases, detunings, or Rabi frequencies. This model exhibits great resistance to all kinds of systematic errors, including single, multiple, and time-varying errors. We propose a modified gradient descent algorithm for adapting the training of phase parameters, and show that different sampling methods result in different robust performances. In particular, there is a trade-off between high fidelity and robustness for a given number of training parameters, and both can be simultaneously enhanced by increasing the number of training parameters (pulses). For its applications, we demonstrate that the current model can be used for achieving high-fidelity arbitrary superposition states and universal quantum gates in a robust manner. This work provides a highly efficient learning model for fault-tolerant quantum computation by training various physical parameters.

Citations (6)

Summary

We haven't generated a summary for this paper yet.