Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Smooth min-entropy lower bounds for approximation chains (2308.11736v2)

Published 22 Aug 2023 in quant-ph, cs.IT, and math.IT

Abstract: For a state $\rho_{A_1n B}$, we call a sequence of states $(\sigma_{A_1k B}{(k)})_{k=1}n$ an approximation chain if for every $1 \leq k \leq n$, $\rho_{A_1k B} \approx_\epsilon \sigma_{A_1k B}{(k)}$. In general, it is not possible to lower bound the smooth min-entropy of such a $\rho_{A_1n B}$, in terms of the entropies of $\sigma_{A_1k B}{(k)}$ without incurring very large penalty factors. In this paper, we study such approximation chains under additional assumptions. We begin by proving a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R\'enyi entropy of an arbitrary auxiliary state while taking into account the smooth max-relative entropy between the two. Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios. In particular, utilising this approach, we prove approximate versions of the asymptotic equipartition property and entropy accumulation. In our companion paper, we show that the techniques developed in this paper can be used to prove the security of quantum key distribution in the presence of source correlations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. R Alicki and M Fannes. Continuity of quantum conditional information. Journal of Physics A: Mathematical and General, 37(5):L55–L57, Jan 2004. doi:10.1088/0305-4470/37/5/l01.
  2. Rotem Arnon-Friedman. Device-Independent Quantum Information Processing. Springer International Publishing, 2020. doi:10.1007/978-3-030-60231-4.
  3. Practical device-independent quantum cryptography via entropy accumulation. Nature Communications, 9(1):459, 2018. doi:10.1038/s41467-017-02307-4.
  4. Continuity of quantum entropic quantities via almost convexity, 2022, 2208.00922.
  5. Rajendra Bhatia. Matrix Analysis, volume 169. Springer, 1997.
  6. The α→1→𝛼1\alpha\rightarrow 1italic_α → 1 limit of the sharp quantum rényi divergence. Journal of Mathematical Physics, 62(9):092205, 2021. doi:10.1063/5.0049791.
  7. Relative entropy bounds on quantum, private and repeater capacities. Communications in Mathematical Physics, 353(2):821–852, 2017.
  8. Multipartite classical and quantum secrecy monotones. Physical Review A, 66(4), Oct 2002. doi:10.1103/physreva.66.042309.
  9. Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication. Communications in Mathematical Physics, 344(3):797–829, May 2016. doi:10.1007/s00220-016-2645-4.
  10. Entropy accumulation with improved second-order term. IEEE Transactions on Information Theory, 65(11):7596–7612, 2019. doi:10.1109/TIT.2019.2929564.
  11. Entropy accumulation. Communications in Mathematical Physics, 379(3):867–913, 2020. doi:10.1007/s00220-020-03839-5.
  12. Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett., 67:661–663, Aug 1991. doi:10.1103/PhysRevLett.67.661.
  13. Defining quantum divergences via convex optimization. Quantum, 5:387, jan 2021. doi:10.22331/q-2021-01-26-387.
  14. Ryszard Horodecki. Informationally coherent quantum systems. Physics Letters A, 187(2):145–150, 1994. doi:https://doi.org/10.1016/0375-9601(94)90052-3.
  15. A direct product theorem for quantum communication complexity with applications to device-independent cryptography, 2023, 2106.04299.
  16. Short proofs of the quantum substate theorem, 2011, 1103.6067. doi:10.48550/ARXIV.1103.6067.
  17. Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states. In The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages 429–438, 2002. doi:10.1109/SFCS.2002.1181967.
  18. Unconditional security from noisy quantum storage. IEEE Transactions on Information Theory, 58(3):1962–1984, 2012. doi:10.1109/TIT.2011.2177772.
  19. Felix Leditzky. Relative entropies and their use in quantum information theory. PhD thesis, 2016, 1611.08802.
  20. Approaches for approximate additivity of the holevo information of quantum channels. Physical Review A, 97(1), jan 2018. doi:10.1103/physreva.97.012332.
  21. Keiji Matsumoto. A new quantum version of f-divergence. In Masanao Ozawa, Jeremy Butterfield, Hans Halvorson, Miklós Rédei, Yuichiro Kitajima, and Francesco Buscemi, editors, Reality and Measurement in Algebraic Quantum Theory, pages 229–273, Singapore, 2018. Springer Singapore.
  22. Proving security of BB84 under source correlations. Manuscript forthcoming, 2024.
  23. Generalised entropy accumulation, 2022, 2203.04989. doi:10.48550/ARXIV.2203.04989.
  24. On quantum Rényi entropies: A new generalization and some properties. Journal of Mathematical Physics, 54(12):122203, 2013. doi:10.1063/1.4838856.
  25. Device-independent quantum key distribution secure against collective attacks. New Journal of Physics, 11(4):045021, Apr 2009. doi:10.1088/1367-2630/11/4/045021.
  26. Modified BB84 quantum key distribution protocol robust to source imperfections, 2022. doi:10.48550/ARXIV.2210.11754.
  27. Renato Renner. Security of Quantum Key Distribution. PhD thesis, 2006, quant-ph/0512258.
  28. Universally composable privacy amplification against quantum adversaries. In Joe Kilian, editor, Theory of Cryptography, pages 407–425, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.
  29. David Sutter. Approximate quantum markov chains. In Approximate Quantum Markov Chains, pages 75–100. Springer International Publishing, 2018. doi:10.1007/978-3-319-78732-9_5.
  30. Ernest Y. Z. Tan. Robustness of implemented device-independent protocols against constrained leakage, 2023, 2302.13928.
  31. A fully quantum asymptotic equipartition property. IEEE Transactions on Information Theory, 55(12):5840–5847, 2009. doi:10.1109/TIT.2009.2032797.
  32. A hierarchy of information quantities for finite block length analysis of quantum tasks. IEEE Transactions on Information Theory, 59(11):7693–7710, 2013. doi:10.1109/TIT.2013.2276628.
  33. A largely self-contained and complete security proof for quantum key distribution. Quantum, 1:14, July 2017. doi:10.22331/q-2017-07-14-14.
  34. Tight finite-key analysis for quantum cryptography. Nature Communications, 3(1):634, 2012. doi:10.1038/ncomms1631.
  35. Marco Tomamichel. A Framework for Non-Asymptotic Quantum Information Theory. PhD thesis, 2012, 1203.2142. doi:10.48550/ARXIV.1203.2142.
  36. Marco Tomamichel. Quantum Information Processing with Finite Resources. Springer International Publishing, 2016. doi:10.1007/978-3-319-21891-5.
  37. Leftover hashing against quantum side information. In IEEE International Symposium on Information Theory, pages 2703 –2707, June 2010. doi:10.1109/ISIT.2010.5513652.
  38. Chain rules for smooth min- and max-entropies. IEEE Transactions on Information Theory, 59(5):2603–2612, 2013. doi:10.1109/TIT.2013.2238656.
  39. Satosi Watanabe. Information theoretical analysis of multivariate correlation. IBM J. Res. Dev., 4(1):66–82, jan 1960. doi:10.1147/rd.41.0066.
  40. Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2013. doi:10.1017/CBO9781139525343.
  41. Andreas Winter. Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints. Communications in Mathematical Physics, 347(1):291–313, 2016. doi:10.1007/s00220-016-2609-8.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com