Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tight Lower Bound on Equivalence Testing in Conditional Sampling Model (2308.11558v1)

Published 22 Aug 2023 in cs.DS, cs.CC, cs.IT, and math.IT

Abstract: We study the equivalence testing problem where the goal is to determine if the given two unknown distributions on $[n]$ are equal or $\epsilon$-far in the total variation distance in the conditional sampling model (CFGM, SICOMP16; CRS, SICOMP15) wherein a tester can get a sample from the distribution conditioned on any subset. Equivalence testing is a central problem in distribution testing, and there has been a plethora of work on this topic in various sampling models. Despite significant efforts over the years, there remains a gap in the current best-known upper bound of $\tilde{O}(\log \log n)$ [FJOPS, COLT 2015] and lower bound of $\Omega(\sqrt{\log \log n})$[ACK, RANDOM 2015, Theory of Computing 2018]. Closing this gap has been repeatedly posed as an open problem (listed as problems 66 and 87 at sublinear.info). In this paper, we completely resolve the query complexity of this problem by showing a lower bound of $\tilde{\Omega}(\log \log n)$. For that purpose, we develop a novel and generic proof technique that enables us to break the $\sqrt{\log \log n}$ barrier, not only for the equivalence testing problem but also for other distribution testing problems, such as uniblock property.

Citations (1)

Summary

We haven't generated a summary for this paper yet.