Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Slow dissipation and spreading in disordered classical systems: A direct comparison between numerics and mathematical bounds (2308.10572v2)

Published 21 Aug 2023 in cond-mat.stat-mech and cond-mat.dis-nn

Abstract: We study the breakdown of Anderson localization in the one-dimensional nonlinear Klein-Gordon chain, a prototypical example of a disordered classical many-body system. A series of numerical works indicate that an initially localized wave packet spreads polynomially in time, while analytical studies rather suggest a much slower spreading. Here, we focus on the decorrelation time in equilibrium. On the one hand, we provide a mathematical theorem establishing that this time is larger than any inverse power law in the effective anharmonicity parameter $\lambda$, and on the other hand our numerics show that it follows a power law for a broad range of values of $\lambda$. This numerical behavior is fully consistent with the power law observed numerically in spreading experiments, and we conclude that the state-of-the-art numerics may well be unable to capture the long-time behavior of such classical disordered systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.