Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition (2308.10557v2)

Published 21 Aug 2023 in cs.CV

Abstract: Hand action recognition is essential. Communication, human-robot interactions, and gesture control are dependent on it. Skeleton-based action recognition traditionally includes hands, which belong to the classes which remain challenging to correctly recognize to date. We propose a method specifically designed for hand action recognition which uses relative angular embeddings and local Spherical Harmonics to create novel hand representations. The use of Spherical Harmonics creates rotation-invariant representations which make hand action recognition even more robust against inter-subject differences and viewpoint changes. We conduct extensive experiments on the hand joints in the First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations, and on the NTU RGB+D 120 dataset, demonstrating the benefit of using Local Spherical Harmonics Representations. Our code is available at https://github.com/KathPra/LSHR_LSHT.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub