Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

COCA: Classifier-Oriented Calibration via Textual Prototype for Source-Free Universal Domain Adaptation (2308.10450v2)

Published 21 Aug 2023 in cs.CV

Abstract: Universal domain adaptation (UniDA) aims to address domain and category shifts across data sources. Recently, due to more stringent data restrictions, researchers have introduced source-free UniDA (SF-UniDA). SF-UniDA methods eliminate the need for direct access to source samples when performing adaptation to the target domain. However, existing SF-UniDA methods still require an extensive quantity of labeled source samples to train a source model, resulting in significant labeling costs. To tackle this issue, we present a novel plug-and-play classifier-oriented calibration (COCA) method. COCA, which exploits textual prototypes, is designed for the source models based on few-shot learning with vision-LLMs (VLMs). It endows the VLM-powered few-shot learners, which are built for closed-set classification, with the unknown-aware ability to distinguish common and unknown classes in the SF-UniDA scenario. Crucially, COCA is a new paradigm to tackle SF-UniDA challenges based on VLMs, which focuses on classifier instead of image encoder optimization. Experiments show that COCA outperforms state-of-the-art UniDA and SF-UniDA models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.