Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computational complexity of counting coincidences (2308.10214v2)

Published 20 Aug 2023 in math.CO, cs.CC, cs.CG, and cs.DM

Abstract: Can you decide if there is a coincidence in the numbers counting two different combinatorial objects? For example, can you decide if two regions in $\mathbb{R}3$ have the same number of domino tilings? There are two versions of the problem, with $2\times 1 \times 1$ and $2\times 2 \times 1$ boxes. We prove that in both cases the coincidence problem is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. While the conclusions are the same, the proofs are notably different and generalize in different directions. We proceed to explore the coincidence problem for counting independent sets and matchings in graphs, matroid bases, order ideals and linear extensions in posets, permutation patterns, and the Kronecker coefficients. We also make a number of conjectures for counting other combinatorial objects such as plane triangulations, contingency tables, standard Young tableaux, reduced factorizations and the Littlewood--Richardson coefficients.

Citations (10)

Summary

We haven't generated a summary for this paper yet.