Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft Decomposed Policy-Critic: Bridging the Gap for Effective Continuous Control with Discrete RL (2308.10203v1)

Published 20 Aug 2023 in cs.LG and cs.AI

Abstract: Discrete reinforcement learning (RL) algorithms have demonstrated exceptional performance in solving sequential decision tasks with discrete action spaces, such as Atari games. However, their effectiveness is hindered when applied to continuous control problems due to the challenge of dimensional explosion. In this paper, we present the Soft Decomposed Policy-Critic (SDPC) architecture, which combines soft RL and actor-critic techniques with discrete RL methods to overcome this limitation. SDPC discretizes each action dimension independently and employs a shared critic network to maximize the soft $Q$-function. This novel approach enables SDPC to support two types of policies: decomposed actors that lead to the Soft Decomposed Actor-Critic (SDAC) algorithm, and decomposed $Q$-networks that generate Boltzmann soft exploration policies, resulting in the Soft Decomposed-Critic Q (SDCQ) algorithm. Through extensive experiments, we demonstrate that our proposed approach outperforms state-of-the-art continuous RL algorithms in a variety of continuous control tasks, including Mujoco's Humanoid and Box2d's BipedalWalker. These empirical results validate the effectiveness of the SDPC architecture in addressing the challenges associated with continuous control.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yechen Zhang (1 paper)
  2. Jian Sun (414 papers)
  3. Gang Wang (406 papers)
  4. Zhuo Li (164 papers)
  5. Wei Chen (1288 papers)