Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exceptional behavior in critical first-passage percolation and random sums (2308.10114v1)

Published 19 Aug 2023 in math.PR

Abstract: We study first-passage percolation (FPP) on the square lattice. The model is defined using i.i.d. nonnegative random edge-weights $(t_e)$ associated to the nearest neighbor edges of $\mathbb{Z}2$. The passage time between vertices $x$ and $y$, $T(x,y)$, is the minimal total weight of any lattice path from $x$ to $y$. The growth rate of $T(x,y)$ depends on the value of $F(0) = \mathbb{P}(t_e=0)$: if $F(0) < 1/2$ then $T(x,y)$ grows linearly in $|x-y|$, but if $F(0) > 1/2$ then it is stochastically bounded. In the critical case, where $F(0) = 1/2$, $T(x,y)$ can be bounded or unbounded depending on the behavior of the distribution function $F$ of $t_e$ near 0. In this paper, we consider the critical case in which $T(x,y)$ is unbounded and prove the existence of an incipient infinite cluster (IIC) type measure, constructed by conditioning the environment on the event that the passage time from $0$ to a far distance remains bounded. This IIC measure is a natural candidate for the distribution of the weights at a typical exceptional time in dynamical FPP. A major part of the analysis involves characterizing the limiting behavior of independent nonnegative random variables conditioned to have small sum. We give conditions on random variables that ensure that such limits are trivial, and several examples that exhibit nontrivial limits.

Summary

We haven't generated a summary for this paper yet.