Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physics-guided training of GAN to improve accuracy in airfoil design synthesis (2308.10038v1)

Published 19 Aug 2023 in cs.LG

Abstract: Generative adversarial networks (GAN) have recently been used for a design synthesis of mechanical shapes. A GAN sometimes outputs physically unreasonable shapes. For example, when a GAN model is trained to output airfoil shapes that indicate required aerodynamic performance, significant errors occur in the performance values. This is because the GAN model only considers data but does not consider the aerodynamic equations that lie under the data. This paper proposes the physics-guided training of the GAN model to guide the model to learn physical validity. Physical validity is computed using general-purpose software located outside the neural network model. Such general-purpose software cannot be used in physics-informed neural network frameworks, because physical equations must be implemented inside the neural network models. Additionally, a limitation of generative models is that the output data are similar to the training data and cannot generate completely new shapes. However, because the proposed model is guided by a physical model and does not use a training dataset, it can generate completely new shapes. Numerical experiments show that the proposed model drastically improves the accuracy. Moreover, the output shapes differ from those of the training dataset but still satisfy the physical validity, overcoming the limitations of existing GAN models.

Citations (10)

Summary

We haven't generated a summary for this paper yet.