Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overview: Jet quenching with machine learning (2308.10035v1)

Published 19 Aug 2023 in hep-ph, hep-ex, and nucl-th

Abstract: Jets are suppressed and modified in heavy ion collisions, which serve as powerful probes to the properties of the quark-gluon plasma (QGP). Attributed to the abundant information carried by the jet constituents and reconstructed substructures, plenty of interesting applications of machine learning techniques have been made on a jet-by-jet basis to study the jet quenching phenomena. Here we review recent proceedings on this topic including the tasks of reconstructing jet momentum in heavy ion collisions, classifying quenched jets and unquenched jets, identifying jet energy loss, locating the jet creation points as well as distinguishing between quark- and gluon-initiated jets in the QGP. Such jet-by-jet analyses will allow us to have a better handle on the jet reconstruction and selections to investigate the effects of jet modifications and push forward the long-standing goal of jet tomographic probes of the QGP.

Summary

We haven't generated a summary for this paper yet.