Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of Solutions to a Class of Kazdan-Warner Equations on Finite Graphs (2308.10002v1)

Published 19 Aug 2023 in math.DG

Abstract: Let $G=(V, E)$ be a connected finite graph, $h$ be a positive function on $V$ and $\lambda {1}(V)$ be the first non-zero eigenvalue of $-\Delta$. For any given finite measure $\mu$ on $V$, define functionals \begin{eqnarray*} J{ \beta }(u)&=&\frac{1}{2}\int_{V}|\nabla u|{2}d \mu -\beta \log\int_{V}he{u}d \mu, J_{ \alpha ,\beta }(u)&=&\frac{1}{2}\int_{V}\left(|\nabla u|{2}- \alpha u{2}\right) d \mu -\beta \log\int_{V}he{u}d \mu \end{eqnarray*} on the functional space $$ {\bf H}= \left{ u\in{\bf W}{1,2}(V) \Bigg| \int_{V}u!\ d\mu =0 \right}. $$ For any $\beta \in \mathbb{R}$, we show that $J_{ \beta }(u)$ has a minimizer $u\in{\bf H}$, and then, based on variational principle, the Kazdan-Warner equation $$ \Delta u=-\frac{\beta he{u}}{\displaystyle{\int_{V}he{u}d \mu }}+\frac{\beta }{\text{Vol}(V)} $$ has a solution in ${\bf H}$. If $\alpha < \lambda {1}(V)$, then for any $\beta \in \mathbb{R} , J{ \alpha ,\beta }(u)$ has a minimizer in ${\bf H}$, thus the Kazdan-Warner equation $$ \Delta u+\alpha!\ u=-\frac{\beta he{u}}{\displaystyle{\int_{V}he{u}d \mu }}+\frac{\beta }{\text{Vol}(V)} $$ has a solution in ${\bf H}$. If $\alpha > \lambda {1}(V)$, then for any $\beta \in \mathbb{R}$, $\displaystyle{\inf{u\in{\bf H}} J_{ \alpha ,\beta }(u) =- \infty}$. When $\alpha=\lambda_{1}(V)$, the situation becomes complicated: if $\beta=0$, the corresponding equation is $-\Delta u=\lambda_{1}(V)u$ which has a solution in ${\bf H}$ obviously; if $\beta>0$, then $\displaystyle{\inf_{u\in {\bf H}} J_{\alpha,\beta }(u) =- \infty}$; if $\beta<0$, $J_{ \alpha ,\beta }(u)$ has a minimizer in some subspace of ${\bf H}$. Moreover, we consider the same problem where higher eigenvalues are involved.

Summary

We haven't generated a summary for this paper yet.