Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Multiscale Consistency for Self-supervised Electron Microscopy Instance Segmentation (2308.09917v3)

Published 19 Aug 2023 in cs.CV and cs.AI

Abstract: Instance segmentation in electron microscopy (EM) volumes is tough due to complex shapes and sparse annotations. Self-supervised learning helps but still struggles with intricate visual patterns in EM. To address this, we propose a pretraining framework that enhances multiscale consistency in EM volumes. Our approach leverages a Siamese network architecture, integrating both strong and weak data augmentations to effectively extract multiscale features. We uphold voxel-level coherence by reconstructing the original input data from these augmented instances. Furthermore, we incorporate cross-attention mechanisms to facilitate fine-grained feature alignment between these augmentations. Finally, we apply contrastive learning techniques across a feature pyramid, allowing us to distill distinctive representations spanning various scales. After pretraining on four large-scale EM datasets, our framework significantly improves downstream tasks like neuron and mitochondria segmentation, especially with limited finetuning data. It effectively captures voxel and feature consistency, showing promise for learning transferable representations for EM analysis.

Citations (14)

Summary

We haven't generated a summary for this paper yet.