Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DiffCharge: Generating EV Charging Scenarios via a Denoising Diffusion Model (2308.09857v2)

Published 18 Aug 2023 in eess.SY and cs.SY

Abstract: Recent proliferation of electric vehicle (EV) charging events has brought prominent stress over power grid operation. Due to the stochastic and volatile EV charging behaviors, the induced charging loads are extremely uncertain, posing modeling and control challenges for grid operators and charging management. Generating EV charging scenarios would aid via synthesizing a myriad of realistic charging scenarios. To this end, we propose a novel denoising Diffusion-based Charging scenario generation model DiffCharge, which is capable of generating a broad variety of realistic EV charging profiles with distinctive temporal properties. It is able to progressively convert the simply known Gaussian noise to genuine charging time-series data, by learning a parameterized reversal of a forward diffusion process. Besides, we leverage the multi-head self-attention and prior conditions to capture the temporal correlations and unique information associated with EV or charging station types in real charging profiles. Moreover, We demonstrate the superiority of DiffCharge on extensive real-world charging datasets, as well as the efficacy on EV integration in power distribution grids.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. R. Lamedica, A. Geri, F. M. Gatta, S. Sangiovanni, M. Maccioni, and A. Ruvio, “Integrating electric vehicles in microgrids: Overview on hosting capacity and new controls,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7338–7346, 2019.
  2. S. Powell, G. V. Cezar, L. Min, I. M. Azevedo, and R. Rajagopal, “Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption,” Nature Energy, vol. 7, no. 10, pp. 932–945, 2022.
  3. Z. Wan, H. Li, H. He, and D. Prokhorov, “Model-free real-time ev charging scheduling based on deep reinforcement learning,” IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5246–5257, 2019.
  4. Y. Li, S. He, Y. Li, L. Ge, S. Lou, and Z. Zeng, “Probabilistic charging power forecast of evcs: Reinforcement learning assisted deep learning approach,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 1, pp. 344–357, 2023.
  5. Z. J. Lee, T. Li, and S. H. Low, “Acn-data: Analysis and applications of an open ev charging dataset,” in Proceedings of the Tenth ACM International Conference on Future Energy Systems, 2019, p. 139–149.
  6. J. Li, J. Zhou, and B. Chen, “Review of wind power scenario generation methods for optimal operation of renewable energy systems,” Applied Energy, vol. 280, p. 115992, 2020.
  7. S. Powell, G. Vianna Cezar, E. Apostolaki-Iosifidou, and R. Rajagopal, “Large-scale scenarios of electric vehicle charging with a data-driven model of control,” Energy, vol. 248, p. 123592, 2022.
  8. J. Quirós-Tortós, A. N. Espinosa, L. F. Ochoa, and T. Butler, “Statistical representation of ev charging: Real data analysis and applications,” in 2018 Power Systems Computation Conference (PSCC), 2018, pp. 1–7.
  9. C. Sun, T. Li, S. H. Low, and V. O. Li, “Classification of electric vehicle charging time series with selective clustering,” Electric Power Systems Research, vol. 189, p. 106695, 2020.
  10. X. Huang, D. Wu, and B. Boulet, “Metaprobformer for charging load probabilistic forecasting of electric vehicle charging stations,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  11. J. Jaworski, N. Zheng, M. Preindl, and B. Xu, “Vehicle-to-grid fleet service provision considering nonlinear battery behaviors,” arXiv preprint arXiv:2301.12041, 2023.
  12. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020, pp. 6840–6851.
  13. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” arXiv preprint arxiv:2209.00796, 2023.
  14. A. Coletta, S. Gopalakrishan, D. Borrajo, and S. Vyetrenko, “On the constrained time-series generation problem,” arXiv preprint arXiv:2307.01717, 2023.
  15. Y. Tashiro, J. Song, Y. Song, and S. Ermon, “Csdi: Conditional score-based diffusion models for probabilistic time series imputation,” Advances in Neural Information Processing Systems, vol. 34, pp. 24 804–24 816, 2021.
  16. L. Buzna, P. De Falco, G. Ferruzzi, S. Khormali, D. Proto, N. Refa, M. Straka, and G. van der Poel, “An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations,” Applied Energy, vol. 283, p. 116337, 2021.
  17. G. Papaefthymiou and B. Klockl, “Mcmc for wind power simulation,” IEEE transactions on energy conversion, vol. 23, no. 1, pp. 234–240, 2008.
  18. J. Morales, R. Mínguez, and A. Conejo, “A methodology to generate statistically dependent wind speed scenarios,” Applied Energy, vol. 87, no. 3, pp. 843–855, 2010.
  19. Y. Chen, Y. Wang, D. Kirschen, and B. Zhang, “Model-free renewable scenario generation using generative adversarial networks,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3265–3275, 2018.
  20. W. Dong, X. Chen, and Q. Yang, “Data-driven scenario generation of renewable energy production based on controllable generative adversarial networks with interpretability,” Applied Energy, vol. 308, 2022.
  21. R. Yuan, B. Wang, Y. Sun, X. Song, and J. Watada, “Conditional style-based generative adversarial networks for renewable scenario generation,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1281–1296, 2022.
  22. J. Dumas, A. Wehenkel, D. Lanaspeze, B. Cornélusse, and A. Sutera, “A deep generative model for probabilistic energy forecasting in power systems: normalizing flows,” Applied Energy, vol. 305, p. 117871, 2022.
  23. E. H. Capel and J. Dumas, “Denoising diffusion probabilistic models for probabilistic energy forecasting,” arXiv preprint arxiv:2212.02977.
  24. H. Jahangir, S. S. Gougheri, B. Vatandoust, M. A. Golkar, M. A. Golkar, A. Ahmadian, and A. Hajizadeh, “A novel cross-case electric vehicle demand modeling based on 3d convolutional generative adversarial networks,” IEEE Transactions on Power Systems, vol. 37, no. 2, pp. 1173–1183, 2021.
  25. N. G. Y. Ng, “Markov chain-based modeling of electric vehicle power consumption,” 2015 NCUR, 2015.
  26. S. Singh, S. Padmanaban, Z. Leonowicz, J. B. Holm-Nielsen et al., “Prosumer energy management for optimal utilization of bid fulfillment with ev uncertainty modeling,” IEEE Transactions on Industry Applications, vol. 58, no. 1, pp. 599–611, 2021.
  27. C. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, D. Anguelov et al., “Motiondiffuser: Controllable multi-agent motion prediction using diffusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9644–9653.
  28. C. Xu, D. Zhao, A. Sangiovanni-Vincentelli, and B. Li, “Diffscene: Diffusion-based safety-critical scenario generation for autonomous vehicles,” in The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
  29. X. Dong, Z. Mao, Y. Sun, and X. Xu, “Short-term wind power scenario generation based on conditional latent diffusion models,” IEEE Transactions on Sustainable Energy, 2023.
  30. J. Tian, R. Xiong, W. Shen, J. Lu, and X.-G. Yang, “Deep neural network battery charging curve prediction using 30 points collected in 10 min,” Joule, vol. 5, no. 6, pp. 1521–1534, 2021.
  31. Q. Cui, Y. Weng, and C.-W. Tan, “Electric vehicle charging station placement method for urban areas,” IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6552–6565, 2019.
  32. H. Jahangir, S. S. Gougheri, B. Vatandoust, M. A. Golkar, A. Ahmadian, and A. Hajizadeh, “Plug-in electric vehicle behavior modeling in energy market: A novel deep learning-based approach with clustering technique,” IEEE Transactions on Smart Grid, vol. 11, no. 6, pp. 4738–4748, 2020.
  33. B. Lin, B. Ghaddar, and J. Nathwani, “Deep reinforcement learning for the electric vehicle routing problem with time windows,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11 528–11 538, 2022.
  34. R.-C. Leou, C.-L. Su, and C.-N. Lu, “Stochastic analyses of electric vehicle charging impacts on distribution network,” IEEE Transactions on Power Systems, vol. 29, no. 3, pp. 1055–1063, 2014.
  35. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021.
  36. C. Luo, “Understanding diffusion models: A unified perspective,” arXiv preprint arxiv:2208.11970, 2022.
  37. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” arXiv preprint arXiv:2011.13456, 2020.
  38. Y. Chen and B. Zhang, “State-of-charge aware ev charging,” in 2022 IEEE Power & Energy Society General Meeting (PESGM), 2022.
  39. Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in time series: A survey,” arXiv preprint arxiv:2202.07125, 2023.
  40. A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion probabilistic models,” in Proceedings of the 38th International Conference on Machine Learning, vol. 139, 2021, pp. 8162–8171.
  41. D. A. R. de Jesús, P. Mandal, T. Senjyu, and S. Kamalasadan, “Unsupervised hybrid deep generative models for photovoltaic synthetic data generation,” in 2021 IEEE Power & Energy Society General Meeting (PESGM), 2021, pp. 1–5.
  42. J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial networks,” Advances in neural information processing systems, vol. 32, 2019.
  43. L. Zhou, M. Poli, W. Xu, S. Massaroli, and S. Ermon, “Deep latent state space models for time-series generation,” in International Conference on Machine Learning.   PMLR, 2023, pp. 42 625–42 643.
Citations (8)

Summary

We haven't generated a summary for this paper yet.