Long-time dynamics for the energy critical heat equation in $R^5$ (2308.09754v1)
Abstract: We investigate the long-time behavior of global solutions to the energy critical heat equation in $R5$ \begin{equation*} \begin{cases} \pp_t u=\Delta u+|u|{\frac{4}{3}} u ~&\mbox{ in }~ R5 \times (t_0,\infty), u(\cdot,t_0)=u_0~&\mbox{ in }~ R5. \end{cases} \end{equation*} For $t_0$ sufficiently large, we show the existence of positive solutions for a class of initial value $u_0(x)\sim |x|{-\gamma}$ as $|x|\rightarrow \infty$ with $\gamma>\frac32$ such that the global solutions behave asymptotically \begin{equation*} | u(\cdot,t) |_{L\infty (\R5)} \sim \begin{cases} t{-\frac{3(2-\gamma)}{2}} ~&\mbox{ if }~ \frac32<\gamma<2 (\ln t){-3} ~&\mbox{ if }~ \gamma=2 1 ~&\mbox{ if }~ \gamma>2 \end{cases} \mbox{ \ for \ } t >t_0, \end{equation*} which is slower than the self-similar time decay $t{-\frac{3}{4}}$. These rates are inspired by Fila-King \cite[Conjecture 1.1]{FilaKing12}.