Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Finite groups of untwisted outer automorphisms of RAAGs (2308.09222v2)

Published 18 Aug 2023 in math.GR and math.GT

Abstract: For any right-angled Artin group $A_{\Gamma}$, Charney--Stambaugh--Vogtmann showed that the subgroup $U0(A_{\Gamma}) \leq\text{Out}(A_{\Gamma})$ generated by Whitehead automorphisms and inversions acts properly and cocompactly on a contractible space $K_{\Gamma}$. In the present paper we show that any finite subgroup of $U0(A_{\Gamma})$ fixes a point of $K_{\Gamma}$. This generalizes the fact that any finite subgroup of $\text{Out}(F_n)$ fixes a point of Outer Space, and implies that there are only finitely many conjugacy classes of finite subgroups in $U0(A_{\Gamma})$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. Outer space for RAAGs. Duke Math. J., 172(6):1033–1108, 2023.
  2. Automorphisms of 2-dimensional right-angled Artin groups. Geom. Topol., 11:2227–2264, 2007.
  3. Representation theory of finite groups and associative algebras. AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original.
  4. Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal., 21(4):851–891, 2011.
  5. Outer space for untwisted automorphisms of right-angled Artin groups. Geom. Topol., 21(2):1131–1178, 2017.
  6. Marc Culler. Finite groups of outer automorphisms of a free group. In Contributions to group theory, volume 33 of Contemp. Math., pages 197–207. Amer. Math. Soc., Providence, RI, 1984.
  7. Nielsen realisation for untwisted automorphisms of right-angled Artin groups. Proc. Lond. Math. Soc. (3), 117(5):901–950, 2018.
  8. Nielsen realization by gluing: limit groups and free products. Michigan Math. J., 67(1):199–223, 2018.
  9. Special cube complexes. Geom. Funct. Anal., 17(5):1551–1620, 2008.
  10. D. G. Khramtsov. Finite groups of automorphisms of free groups. Mat. Zametki, 38(3):386–392, 476, 1985.
  11. Michael R. Laurence. A generating set for the automorphism group of a graph group. J. London Math. Soc. (2), 52(2):318–334, 1995.
  12. On the maximum order of torsion elements in GL⁢(n,𝐙)GL𝑛𝐙{\rm GL}(n,{\bf Z})roman_GL ( italic_n , bold_Z ) and Aut⁢(Fn)Autsubscript𝐹𝑛{\rm Aut}(F_{n})roman_Aut ( italic_F start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). J. Algebra, 208(2):630–642, 1998.
  13. Herman Servatius. Automorphisms of graph groups. J. Algebra, 126(1):34–60, 1989.
  14. Automorphisms of graphs, p𝑝pitalic_p-subgroups of Out⁢(Fn)Outsubscript𝐹𝑛{\rm Out}(F_{n})roman_Out ( italic_F start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) and the Euler characteristic of Out⁢(Fn)Outsubscript𝐹𝑛{\rm Out}(F_{n})roman_Out ( italic_F start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ). J. Pure Appl. Algebra, 49(1-2):187–200, 1987.
  15. Bruno Zimmermann. Über Homöomorphismen n𝑛nitalic_n-dimensionaler Henkelkörper und endliche Erweiterungen von Schottky-Gruppen. Comment. Math. Helv., 56(3):474–486, 1981.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com