Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A non-convex relaxed version of minimax theorems (2308.09111v1)

Published 17 Aug 2023 in math.OC

Abstract: Given a subset $A\times B$ of a locally convex space $X\times Y$ (with $A$ compact) and a function $f:A\times B\rightarrow\overline{\mathbb{R}}$ such that $f(\cdot,y),$ $y\in B,$ are concave and upper semicontinuous, the minimax inequality $\max_{x\in A} \inf_{y\in B} f(x,y) \geq \inf_{y\in B} \sup_{x\in A_{0}} f(x,y)$ is shown to hold provided that $A_{0}$ be the set of $x\in A$ such that $f(x,\cdot)$ is proper, convex and lower semi-contiuous. Moreover, if in addition $A\times B\subset f{-1}(\mathbb{R})$, then we can take as $A_{0}$ the set of $x\in A$ such that $f(x,\cdot)$ is convex. The relation to Moreau's biconjugate representation theorem is discussed, and some applications to\ convex duality are provided. Key words. Minimax theorem, Moreau theorem, conjugate function, convex optimization.

Summary

We haven't generated a summary for this paper yet.