Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experimental quantum e-commerce (2308.08821v2)

Published 17 Aug 2023 in quant-ph, cs.CR, and physics.app-ph

Abstract: E-commerce, a type of trading that occurs at a high frequency on the Internet, requires guaranteeing the integrity, authentication and non-repudiation of messages through long distance. As current e-commerce schemes are vulnerable to computational attacks, quantum cryptography, ensuring information-theoretic security against adversary's repudiation and forgery, provides a solution to this problem. However, quantum solutions generally have much lower performance compared to classical ones. Besides, when considering imperfect devices, the performance of quantum schemes exhibits a significant decline. Here, for the first time, we demonstrate the whole e-commerce process of involving the signing of a contract and payment among three parties by proposing a quantum e-commerce scheme, which shows resistance of attacks from imperfect devices. Results show that with a maximum attenuation of 25 dB among participants, our scheme can achieve a signature rate of 0.82 times per second for an agreement size of approximately 0.428 megabit. This proposed scheme presents a promising solution for providing information-theoretic security for e-commerce.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Journal on Computing 41, 303 (1999).
  2. É. Gouzien and N. Sangouard, Factoring 2048-bit rsa integers in 177 days with 13 436 qubits and a multimode memory, Phys. Rev. Lett. 127, 140503 (2021).
  3. R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key cryptosystems, Commun. ACM 21 (1978).
  4. R. A. DeMillo, Foundations of secure computation, Tech. Rep. (Georgia Institute of Technology, 1978).
  5. T. Elgamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inf. Theory 31, 469 (1985).
  6. J. H. Silverman and J. T. Tate, Rational points on elliptic curves (Springer, 1992).
  7. C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Theor. Comput. Sci. 560, 7 (2014).
  8. A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
  9. S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A vision for the road ahead, Science 362, eaam9288 (2018).
  10. A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied cryptography (CRC press, 2018).
  11. D. Gottesman and I. Chuang, Quantum digital signatures, arXiv preprint quant-ph/0105032  (2001).
  12. V. Dunjko, P. Wallden, and E. Andersson, Quantum digital signatures without quantum memory, Phys. Rev. Lett. 112, 040502 (2014).
  13. H.-L. Yin, Y. Fu, and Z.-B. Chen, Practical quantum digital signature, Phys. Rev. A 93, 032316 (2016a).
  14. H.-K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108, 130503 (2012).
  15. T. Shang, Q. Lei, and J. Liu, Quantum random oracle model for quantum digital signature, Phys. Rev. A 94, 042314 (2016).
  16. S. L. Braunstein and S. Pirandola, Side-channel-free quantum key distribution, Phys. Rev. Lett. 108, 130502 (2012).
  17. M. Pereira, M. Curty, and K. Tamaki, Quantum key distribution with flawed and leaky sources, npj Quantum Inf. 5, 62 (2019).
  18. X.-B. Wang, X.-L. Hu, and Z.-W. Yu, Practical long-distance side-channel-free quantum key distribution, Phys. Rev. Applied 12, 054034 (2019).
  19. R. Konig, R. Renner, and C. Schaffner, The operational meaning of min-and max-entropy, IEEE Trans. Inf. Theory 55, 4337 (2009).
  20. Amazon Web Services Customer Agreement, https://aws.amazon.com/agreement/?nc1=h_ls (2023).
  21. H. Krawczyk, LFSR-based hashing and authentication, in Annual International Cryptology Conference (1994) pp. 129–139.
  22. S. Sun, Security of reference-frame-independent quantum key distribution with source flaws, Phys. Rev. A 104, 022423 (2021).
  23. G. Kato, Concentration inequality using unconfirmed knowledge, arXiv preprint arXiv:2002.04357  (2020).
  24. G. Brassard and L. Salvail, Secret-key reconciliation by public discussion, in Advances in Cryptology-EUROCRYP’93 (1994) pp. 410–423.
  25. V. Shoup, On fast and provably secure message authentication based on universal hashing, in Annual International Cryptology Conference (CRYPTO) (Springer, 1996) pp. 313–328.
  26. J. Massey, Shift-register synthesis and bch decoding, IEEE Trans. Inf. Theory 15, 122 (1969).
  27. W. Hoeffding, Probability inequalities for sums of bounded random variables, The collected works of Wassily Hoeffding , 409 (1994).
Citations (32)

Summary

We haven't generated a summary for this paper yet.