Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving CTC-AED model with integrated-CTC and auxiliary loss regularization (2308.08449v1)

Published 15 Aug 2023 in cs.CL, cs.SD, and eess.AS

Abstract: Connectionist temporal classification (CTC) and attention-based encoder decoder (AED) joint training has been widely applied in automatic speech recognition (ASR). Unlike most hybrid models that separately calculate the CTC and AED losses, our proposed integrated-CTC utilizes the attention mechanism of AED to guide the output of CTC. In this paper, we employ two fusion methods, namely direct addition of logits (DAL) and preserving the maximum probability (PMP). We achieve dimensional consistency by adaptively affine transforming the attention results to match the dimensions of CTC. To accelerate model convergence and improve accuracy, we introduce auxiliary loss regularization for accelerated convergence. Experimental results demonstrate that the DAL method performs better in attention rescoring, while the PMP method excels in CTC prefix beam search and greedy search.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Daobin Zhu (1 paper)
  2. Xiangdong Su (12 papers)
  3. Hongbin Zhang (93 papers)
Citations (1)