Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiplicative deconvolution under unknown error distribution (2308.08423v1)

Published 16 Aug 2023 in math.ST and stat.TH

Abstract: We consider a multiplicative deconvolution problem, in which the density $f$ or the survival function $SX$ of a strictly positive random variable $X$ is estimated nonparametrically based on an i.i.d. sample from a noisy observation $Y = X\cdot U$ of $X$. The multiplicative measurement error $U$ is supposed to be independent of $X$. The objective of this work is to construct a fully data-driven estimation procedure when the error density $fU$ is unknown. We assume that in addition to the i.i.d. sample from $Y$, we have at our disposal an additional i.i.d. sample drawn independently from the error distribution. The proposed estimation procedure combines the estimation of the Mellin transformation of the density $f$ and a regularisation of the inverse of the Mellin transform by a spectral cut-off. The derived risk bounds and oracle-type inequalities cover both - the estimation of the density $f$ as well as the survival function $SX$. The main issue addressed in this work is the data-driven choice of the cut-off parameter using a model selection approach. We discuss conditions under which the fully data-driven estimator can attain the oracle-risk up to a constant without any previous knowledge of the error distribution. We compute convergences rates under classical smoothness assumptions. We illustrate the estimation strategy by a simulation study with different choices of distributions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.