Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MoCoSA: Momentum Contrast for Knowledge Graph Completion with Structure-Augmented Pre-trained Language Models (2308.08204v1)

Published 16 Aug 2023 in cs.CL

Abstract: Knowledge Graph Completion (KGC) aims to conduct reasoning on the facts within knowledge graphs and automatically infer missing links. Existing methods can mainly be categorized into structure-based or description-based. On the one hand, structure-based methods effectively represent relational facts in knowledge graphs using entity embeddings. However, they struggle with semantically rich real-world entities due to limited structural information and fail to generalize to unseen entities. On the other hand, description-based methods leverage pre-trained LLMs (PLMs) to understand textual information. They exhibit strong robustness towards unseen entities. However, they have difficulty with larger negative sampling and often lag behind structure-based methods. To address these issues, in this paper, we propose Momentum Contrast for knowledge graph completion with Structure-Augmented pre-trained LLMs (MoCoSA), which allows the PLM to perceive the structural information by the adaptable structure encoder. To improve learning efficiency, we proposed momentum hard negative and intra-relation negative sampling. Experimental results demonstrate that our approach achieves state-of-the-art performance in terms of mean reciprocal rank (MRR), with improvements of 2.5% on WN18RR and 21% on OpenBG500.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jiabang He (6 papers)
  2. Liu Jia (6 papers)
  3. Lei Wang (975 papers)
  4. Xiyao Li (9 papers)
  5. Xing Xu (48 papers)
Citations (6)