Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regret Lower Bounds in Multi-agent Multi-armed Bandit (2308.08046v1)

Published 15 Aug 2023 in cs.LG and stat.ML

Abstract: Multi-armed Bandit motivates methods with provable upper bounds on regret and also the counterpart lower bounds have been extensively studied in this context. Recently, Multi-agent Multi-armed Bandit has gained significant traction in various domains, where individual clients face bandit problems in a distributed manner and the objective is the overall system performance, typically measured by regret. While efficient algorithms with regret upper bounds have emerged, limited attention has been given to the corresponding regret lower bounds, except for a recent lower bound for adversarial settings, which, however, has a gap with let known upper bounds. To this end, we herein provide the first comprehensive study on regret lower bounds across different settings and establish their tightness. Specifically, when the graphs exhibit good connectivity properties and the rewards are stochastically distributed, we demonstrate a lower bound of order $O(\log T)$ for instance-dependent bounds and $\sqrt{T}$ for mean-gap independent bounds which are tight. Assuming adversarial rewards, we establish a lower bound $O(T{\frac{2}{3}})$ for connected graphs, thereby bridging the gap between the lower and upper bound in the prior work. We also show a linear regret lower bound when the graph is disconnected. While previous works have explored these settings with upper bounds, we provide a thorough study on tight lower bounds.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mengfan Xu (9 papers)
  2. Diego Klabjan (111 papers)
Citations (1)