Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Atomic interferometer based on optical tweezers (2308.07768v2)

Published 15 Aug 2023 in quant-ph, cond-mat.quant-gas, physics.atom-ph, and physics.optics

Abstract: Atomic interferometers measure forces and acceleration with exceptional precision. The conventional approach to atomic interferometry is to launch an atomic cloud into a ballistic trajectory and perform the wave-packet splitting in momentum space by Raman transitions. This places severe constraints on the possible atomic trajectory, positioning accuracy and probing duration. Here, we propose and analyze a novel atomic interferometer that uses micro-optical traps (optical tweezers) to manipulate and control the motion of atoms. The new interferometer allows long probing time, sub micrometer positioning accuracy, and utmost flexibility in shaping of the atomic trajectory. The cornerstone of the tweezer interferometer are the coherent atomic splitting and combining schemes. We present two adiabatic schemes with two or three tweezers that are robust to experimental imperfections and work simultaneously with many vibrational states. The latter property allows for multi-atom interferometry in a single run. We also highlight the advantage of using fermionic atoms to obtain single-atom occupation of vibrational states and to eliminate mean-field shifts. We examine the impact of tweezer intensity noise and demonstrate that, when constrained by shot noise, the interferometer can achieve a relative accuracy better than $10{-11}$ in measuring Earth's gravitational acceleration. The sub-micrometer resolution and extended measurement duration offer promising opportunities for exploring fundamental physical laws in new regimes. We discuss two applications well-suited for the unique capabilities of the tweezer interferometer: the measurement of gravitational forces and the study of Casimir-Polder forces between atoms and surfaces. Crucially, our proposed tweezer interferometer is within the reach of current technological capabilities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. A. A. Michelson and E. W. Morley, On the relative motion of the earth and the luminiferous ether, Am. J. Sci. 34, 333 (1887).
  2. I. Estermann and A. Stern, Beugung von elektronen an kristallen, Zeitschrift für Physik 61, 95 (1930).
  3. P. R. Berman, Atom interferometry (Academic press, 1997).
  4. A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Optics and interferometry with atoms and molecules, Rev. Mod. Phys. 81, 1051 (2009).
  5. J. S. J.-F. Schaff, T. Langen, Interferometry with atoms, La Rivista del Nuovo Cimento 37, 509 (2014).
  6. C. J. Bordé, Atomic interferometry with internal state labelling, Physics letters A 140, 10 (1989).
  7. M. Kasevich and S. Chu, Atomic interferometry using stimulated raman transitions, Phys. Rev. Lett. 67, 181 (1991).
  8. A. M. Kaufman and K.-K. Ni, Quantum science with optical tweezer arrays of ultracold atoms and molecules, Nat. Phys. 17, 1324 (2021).
  9. A. Browaeys and T. Lahaye, Many-body physics with individually controlled rydberg atoms, Nat. Phys. 16, 132 (2020).
  10. N. V. Vitanov and B. W. Shore, Stimulated raman adiabatic passage in a two-state system, Phys. Rev. A 73, 053402 (2006).
  11. J. A. C. Weideman and B. M. Herbst, Split-step methods for the solution of the nonlinear schrödinger equation, SIAM Journal on Numerical Analysis 23, 485 (1986).
  12. Y. N. Demkov and P. B. Kurasov, Von neumann-wigner theorem: Level repulsion and degenerate eigenvalues, Theoret. Math. Phys. 153, 1407 (2007).
  13. P. Storey and C. Cohen-Tannoudji, The feynman path integral approach to atomic interferometry. a tutorial, J. Phys. II 4, 1999 (1994).
  14. A. B. Deb and N. Kjærgaard, Observation of pauli blocking in light scattering from quantum degenerate fermions,  374, 972.
  15. H. B. G. Casimir, On the attraction between two perfectly conducting plates, Proceedings of the Royal Netherlands Academy of Arts and Sciences 51, 793 (1948).
  16. H. B. G. Casimir and D. Polder, The influence of retardation on the london-van der waals forces, Phys. Rev. 73, 360 (1948).
  17. S. Scheel and S. Y. Buhmann, Macroscopic quantum electrodynamics – concepts and applications, Acta Phys Slovaca 58, 675 (2008).
  18. R. Onofrio, Casimir forces and non-newtonian gravitation, New J. Phys. 8, 237 (2006).
  19. G. L. Klimchitskaya and V. M. Mostepanenko, How to strengthen constraints on non-newtonian gravity from measuring the lateral casimir force, Universe 9, 34 (2023).
  20. S. K. Lamoreaux, Demonstration of the casimir force in the 0.6 to 6⁢μ⁢m6𝜇𝑚6\mu m6 italic_μ italic_m range, Phys. Rev. Lett. 78, 5 (1997).
  21. U. Mohideen and A. Roy, Precision measurement of the casimir force from 0.1 to 0.9⁢μ⁢m0.9𝜇𝑚0.9\mathit{\mu}m0.9 italic_μ italic_m, Phys. Rev. Lett. 81, 4549 (1998).
  22. A. Shih and V. A. Parsegian, Van der waals forces between heavy alkali atoms and gold surfaces: Comparison of measured and predicted values, Phys. Rev. A 12, 835 (1975).
  23. J. D. Perreault and A. D. Cronin, Observation of atom wave phase shifts induced by van der waals atom-surface interactions, Phys. Rev. Lett. 95, 133201 (2005).
  24. F. Shimizu, Specular reflection of very slow metastable neon atoms from a solid surface, Phys. Rev. Lett. 86, 987 (2001).
  25. V. Druzhinina and M. DeKieviet, Experimental observation of quantum reflection far from threshold, Phys. Rev. Lett. 91, 193202 (2003).
  26. H. Friedrich, G. Jacoby, and C. G. Meister, Quantum reflection by casimir–van der waals potential tails, Phys. Rev. A 65, 032902 (2002).
  27. R. D. Newman, E. C. Berg, and P. E. Boynton, Tests of the gravitational inverse square law at short ranges, Space Sci. Rev. 148, 175 (2009).
  28. D. Carney, H. Müller, and J. M. Taylor, Using an atom interferometer to infer gravitational entanglement generation, PRX Quantum 2, 030330 (2021).
Citations (6)

Summary

We haven't generated a summary for this paper yet.