Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dancing Avatar: Pose and Text-Guided Human Motion Videos Synthesis with Image Diffusion Model (2308.07749v1)

Published 15 Aug 2023 in cs.CV and cs.AI

Abstract: The rising demand for creating lifelike avatars in the digital realm has led to an increased need for generating high-quality human videos guided by textual descriptions and poses. We propose Dancing Avatar, designed to fabricate human motion videos driven by poses and textual cues. Our approach employs a pretrained T2I diffusion model to generate each video frame in an autoregressive fashion. The crux of innovation lies in our adept utilization of the T2I diffusion model for producing video frames successively while preserving contextual relevance. We surmount the hurdles posed by maintaining human character and clothing consistency across varying poses, along with upholding the background's continuity amidst diverse human movements. To ensure consistent human appearances across the entire video, we devise an intra-frame alignment module. This module assimilates text-guided synthesized human character knowledge into the pretrained T2I diffusion model, synergizing insights from ChatGPT. For preserving background continuity, we put forth a background alignment pipeline, amalgamating insights from segment anything and image inpainting techniques. Furthermore, we propose an inter-frame alignment module that draws inspiration from an auto-regressive pipeline to augment temporal consistency between adjacent frames, where the preceding frame guides the synthesis process of the current frame. Comparisons with state-of-the-art methods demonstrate that Dancing Avatar exhibits the capacity to generate human videos with markedly superior quality, both in terms of human and background fidelity, as well as temporal coherence compared to existing state-of-the-art approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Bosheng Qin (4 papers)
  2. Wentao Ye (15 papers)
  3. Qifan Yu (14 papers)
  4. Siliang Tang (116 papers)
  5. Yueting Zhuang (164 papers)
Citations (9)