Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EMID: An Emotional Aligned Dataset in Audio-Visual Modality (2308.07622v2)

Published 15 Aug 2023 in cs.MM

Abstract: In this paper, we propose Emotionally paired Music and Image Dataset (EMID), a novel dataset designed for the emotional matching of music and images, to facilitate auditory-visual cross-modal tasks such as generation and retrieval. Unlike existing approaches that primarily focus on semantic correlations or roughly divided emotional relations, EMID emphasizes the significance of emotional consistency between music and images using an advanced 13-dimension emotional model. By incorporating emotional alignment into the dataset, it aims to establish pairs that closely align with human perceptual understanding, thereby raising the performance of auditory-visual cross-modal tasks. We also design a supplemental module named EMI-Adapter to optimize existing cross-modal alignment methods. To validate the effectiveness of the EMID, we conduct a psychological experiment, which has demonstrated that considering the emotional relationship between the two modalities effectively improves the accuracy of matching in abstract perspective. This research lays the foundation for future cross-modal research in domains such as psychotherapy and contributes to advancing the understanding and utilization of emotions in cross-modal alignment. The EMID dataset is available at https://github.com/ecnu-aigc/EMID.

Citations (1)

Summary

We haven't generated a summary for this paper yet.