Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Order-based Structure Learning with Normalizing Flows (2308.07480v2)

Published 14 Aug 2023 in cs.LG and stat.ME

Abstract: Estimating the causal structure of observational data is a challenging combinatorial search problem that scales super-exponentially with graph size. Existing methods use continuous relaxations to make this problem computationally tractable but often restrict the data-generating process to additive noise models (ANMs) through explicit or implicit assumptions. We present Order-based Structure Learning with Normalizing Flows (OSLow), a framework that relaxes these assumptions using autoregressive normalizing flows. We leverage the insight that searching over topological orderings is a natural way to enforce acyclicity in structure discovery and propose a novel, differentiable permutation learning method to find such orderings. Through extensive experiments on synthetic and real-world data, we demonstrate that OSLow outperforms prior baselines and improves performance on the observational Sachs and SynTReN datasets as measured by structural hamming distance and structural intervention distance, highlighting the importance of relaxing the ANM assumption made by existing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.