Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Web invariants for flamingo Specht modules (2308.07256v2)

Published 14 Aug 2023 in math.CO and math.RT

Abstract: Webs yield an especially important realization of certain Specht modules, irreducible representations of symmetric groups, as they provide a pictorial basis with a convenient diagrammatic calculus. In recent work, the last three authors associated polynomials to noncrossing partitions without singleton blocks, so that the corresponding polynomials form a web basis of the pennant Specht module $S{(d,d,1{n-2d})}$. These polynomials were interpreted as global sections of a line bundle on a 2-step partial flag variety. Here, we both simplify and extend this construction. On the one hand, we show that these polynomials can alternatively be situated in the homogeneous coordinate ring of a Grassmannian, instead of a 2-step partial flag variety, and can be realized as tensor invariants of classical (but highly nonplanar) tensor diagrams. On the other hand, we extend these ideas from the pennant Specht module $S{(d,d,1{n-2d})}$ to more general flamingo Specht modules $S{(dr,1{n-rd})}$. In the hook case $r=1$, we obtain a spanning set that can be restricted to a basis in various ways. In the case $r>2$, we obtain a basis of a well-behaved subspace of $S{(dr,1{n-rd})}$, but not of the entire module.

Summary

We haven't generated a summary for this paper yet.