Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernelization for Spreading Points (2308.07099v1)

Published 14 Aug 2023 in cs.CG

Abstract: We consider the following problem about dispersing points. Given a set of points in the plane, the task is to identify whether by moving a small number of points by small distance, we can obtain an arrangement of points such that no pair of points is ``close" to each other. More precisely, for a family of $n$ points, an integer $k$, and a real number $d > 0$, we ask whether at most $k$ points could be relocated, each point at distance at most $d$ from its original location, such that the distance between each pair of points is at least a fixed constant, say $1$. A number of approximation algorithms for variants of this problem, under different names like distant representatives, disk dispersing, or point spreading, are known in the literature. However, to the best of our knowledge, the parameterized complexity of this problem remains widely unexplored. We make the first step in this direction by providing a kernelization algorithm that, in polynomial time, produces an equivalent instance with $O(d2k3)$ points. As a byproduct of this result, we also design a non-trivial fixed-parameter tractable (FPT) algorithm for the problem, parameterized by $k$ and $d$. Finally, we complement the result about polynomial kernelization by showing a lower bound that rules out the existence of a kernel whose size is polynomial in $k$ alone, unless $\mathsf{NP} \subseteq \mathsf{coNP}/\text{poly}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fedor V. Fomin (137 papers)
  2. Petr A. Golovach (105 papers)
  3. Tanmay Inamdar (40 papers)
  4. Saket Saurabh (171 papers)
  5. Meirav Zehavi (83 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.