Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of fundamental shadow link complements and applications to the 1-loop conjecture (2308.06643v2)

Published 12 Aug 2023 in math.GT and math.DG

Abstract: We construct a geometric ideal triangulation for every fundamental shadow link complement and solve the gluing equation explicitly in terms of the logarithmic holonomies of the meridians of the link for any generic character in the distinguished component of the $\mathrm{PSL}(2;\mathbb{C})$-character variety of the link complement. As immediate applications, we obtain a new formula for the volume of a hyperideal tetrahedron in terms of its dihedral angles, and a formula for the volume of hyperbolic 3-manifolds obtained by doing Dehn-fillings to some of the boundary components of fundamental shadow link complements. Moreover, by using these ideal triangulations, we verify the 1-loop conjecture proposed by Dimofte and Garoufalidis for every fundamental shadow link complement. By using the result of Kalelkar-Schleimer-Segerman \cite{KSS}, we also prove the topological invariance of the 1-loop invariant and show that the 1-loop invariant satisfies a surgery formula. As a result, we prove the 1-loop conjecture for manifolds obtained by doing sufficiently long Dehn-fillings on boundary components of any fundamental shadow link complement. This verifies the 1-loop conjecture for a large class of hyperbolic 3-manifolds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com