Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riesz Energy, $L^2$ Discrepancy, and Optimal Transport of Determinantal Point Processes on the Sphere and the Flat Torus (2308.06216v2)

Published 11 Aug 2023 in math.CA, math-ph, math.MP, and math.PR

Abstract: Determinantal point processes exhibit an inherent repulsive behavior, thus providing examples of very evenly distributed point sets on manifolds. In this paper, we study the so-called harmonic ensemble, defined in terms of Laplace eigenfunctions on the sphere $\mathbb{S}d$ and the flat torus $\mathbb{T}d$, and the so-called spherical ensemble on $\mathbb{S}2$, which originates in random matrix theory. We extend results of Beltr\'an, Marzo and Ortega-Cerd`a on the Riesz $s$-energy of the harmonic ensemble to the nonsingular regime $s<0$, and as a corollary find the expected value of the spherical cap $L2$ discrepancy via the Stolarsky invariance principle. We find the expected value of the $L2$ discrepancy with respect to axis-parallel boxes and Euclidean balls of the harmonic ensemble on $\mathbb{T}d$. We also show that the spherical ensemble and the harmonic ensemble on $\mathbb{S}2$ and $\mathbb{T}2$ with $N$ points attain the optimal rate $N{-1/2}$ in expectation in the Wasserstein metric $W_2$, in contrast to i.i.d. random points, which are known to lose a factor of $(\log N){1/2}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. R. Alexander: On the sum of distances between n𝑛nitalic_n points on a sphere. Acta Math. Acad. Sci. Hungar. 23 (1972), 443–448.
  2. J. Beck: Sums of distances between points on a sphere — an application of the theory of irregularities of distribution to discrete geometry. Mathematika 31 (1984), 33–41.
  3. J. Beck: Irregularities of distribution. I. Acta Math. 159 (1987), 1–49.
  4. J. Beck and W. Chen: Note on irregularities of distribution. II. Proc. London Math. Soc. 61 (1990), 251–272.
  5. C. Beltrán and U. Etayo: The projective ensemble and distribution of points in odd-dimensional spheres. Constr. Approx. 48 (2018), 163–182.
  6. C. Beltrán and U. Etayo: A generalization of the spherical ensemble to even-dimensional spheres. J. Math. Anal. Appl. 475 (2019), 1073–1092.
  7. C. Beltrán and D. Ferizović: Approximation to uniform distribution in SO⁢(3)normal-SO3\mathrm{SO}(3)roman_SO ( 3 ). Constr. Approx. 52 (2020), 283–311.
  8. B. Borda: Empirical measures and random walks on compact spaces in the quadratic Wasserstein metric. Ann. Inst. Henri Poincaré Probab. Stat. 59 (2023), 2017–2035.
  9. J. Brauchart and J. Dick: A simple proof of Stolarsky’s invariance principle. Proc. Amer. Math. Soc. 141 (2013), 2085–2096.
  10. M. Iacobelli: Asymptotic quantization for probability measures on Riemannian manifolds. ESAIM Control Optim. Calc. Var. 22 (2016), 770–785.
  11. J. Jalowy: The Wasserstein distance to the circular law. Ann. Inst. Henri Poincaré Probab. Stat. 59 (2023), 2285–2307.
  12. B. Kloeckner: Approximation by finitely supported measures. ESAIM Control Optim. Calc. Var. 18 (2012), 343–359.
  13. M. Krishnapur: From random matrices to random analytic functions. Ann. Probab. 37 (2009), 314–346.
  14. R. Kritzinger and F. Pillichshammer: Point sets with optimal order of extreme and periodic discrepancy. Acta Arith. 204 (2022), 191–223.
  15. V. Lev: On two versions of L2superscript𝐿2L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-discrepancy and geometrical interpretation of diaphony. Acta Math. Hungar. 69 (1995), 281–300.
  16. V. Lev: The exact order of generalized diaphony and multidimensional numerical integration. J. Austral. Math. Soc. Ser. A 66 (1999), 1–17.
  17. J. Marzo and J. Ortega-Cerdà: Expected Riesz energy of some determinantal processes on flat tori. Constr. Approx. 47 (2018), 75–88.
  18. F. Pillichshammer: Optimal periodic L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-discrepancy and diaphony bounds for higher order digital sequences. Acta Math. Hungar. 169 (2023), 252–271.
  19. M. M. Skriganov: Point distributions in compact metric spaces. Mathematika 63 (2017), 1152–1171.
  20. M. M. Skriganov: Point distributions on two-point homogeneous spaces. Mathematika 65 (2019), 557–587.
  21. M. M. Skriganov: Bounds for Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-discrepancies of point distributions in compact metric measure spaces. Constr. Approx. 51 (2020), 413–425.
  22. T. Stepanyuk: Hyperuniform point sets on flat tori: deterministic and probabilistic aspects. Constr. Approx. 52 (2020), 313–339.
  23. K. Stolarsky: Sums of distances between points on a sphere. II. Proc. Amer. Math. Soc. 41 (1973), 575–582.
  24. G. Wagner: On means of distances on the surface of a sphere (lower bounds). Pacific J. Math. 144 (1990), 389–398.
  25. G. Wagner: On means of distances on the surface of a sphere. II. Upper bounds. Pacific J. Math. 154 (1992), 381–396.
  26. P. Zinterhof: Über einige Abschätzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden. (German) Österr. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185 (1976), 121–132.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets