Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Game-Theoretic Framework for Joint Forecasting and Planning (2308.06137v2)

Published 11 Aug 2023 in cs.AI

Abstract: Planning safe robot motions in the presence of humans requires reliable forecasts of future human motion. However, simply predicting the most likely motion from prior interactions does not guarantee safety. Such forecasts fail to model the long tail of possible events, which are rarely observed in limited datasets. On the other hand, planning for worst-case motions leads to overtly conservative behavior and a "frozen robot". Instead, we aim to learn forecasts that predict counterfactuals that humans guard against. We propose a novel game-theoretic framework for joint planning and forecasting with the payoff being the performance of the planner against the demonstrator, and present practical algorithms to train models in an end-to-end fashion. We demonstrate that our proposed algorithm results in safer plans in a crowd navigation simulator and real-world datasets of pedestrian motion. We release our code at https://github.com/portal-cornell/Game-Theoretic-Forecasting-Planning.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling, R. Roelofs, A. Bewley, C. Liu, A. Venugopal et al., “Scene transformer: A unified multi-task model for behavior prediction and planning,” arXiv e-prints, pp. arXiv–2106, 2021.
  2. L. L. Li, B. Yang, M. Liang, W. Zeng, M. Ren, S. Segal, and R. Urtasun, “End-to-end contextual perception and prediction with interaction transformer,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2020.
  3. A. Bajcsy, S. Bansal, E. Ratner, C. J. Tomlin, and A. D. Dragan, “A robust control framework for human motion prediction,” IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 24–31, 2020.
  4. K. Leung, A. Bajcsy, E. Schmerling, and M. Pavone, “Towards data-driven synthesis of autonomous vehicle safety concepts,” arXiv preprint arXiv:2107.14412, 2021.
  5. D. Sadigh, S. S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for autonomous cars that leverage effects on human actions,” in Robotics: Science and Systems, 2016.
  6. D. Sadigh, S. S. Sastry, A. Seshia, and A. D. Dragan, “Information gathering actions over human internal state,” 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 66–73, 2016.
  7. D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J. Tomlin, “Efficient iterative linear-quadratic approximations for nonlinear multi-player general-sum differential games,” 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1475–1481, 2020.
  8. M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-theoretic planning for self-driving cars in multivehicle competitive scenarios,” IEEE Transactions on Robotics, vol. 37, pp. 1313–1325, 2021.
  9. S. L. Cleac’h, M. Schwager, and Z. Manchester, “Algames: a fast augmented lagrangian solver for constrained dynamic games,” Autonomous Robots, vol. 46, pp. 201–215, 2022.
  10. A. Liniger and J. Lygeros, “A noncooperative game approach to autonomous racing,” IEEE Transactions on Control Systems Technology, vol. 28, pp. 884–897, 2020.
  11. L. Peters, D. Fridovich-Keil, V. Rubies-Royo, C. J. Tomlin, and C. Stachniss, “Inferring objectives in continuous dynamic games from noise-corrupted partial state observations,” ArXiv, vol. abs/2106.03611, 2021.
  12. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” 2019 International Conference on Robotics and Automation (ICRA), pp. 6015–6022, 2018.
  13. B. Ivanovic, K. Leung, E. Schmerling, and M. Pavone, “Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach,” IEEE Robotics and Automation Letters, vol. 6, pp. 295–302, 2020.
  14. T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data,” in European Conference on Computer Vision, 2020.
  15. Y. Liu, Q. Yan, and A. Alahi, “Social nce: Contrastive learning of socially-aware motion representations,” 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15 098–15 109, 2020.
  16. Y. Liu, R. Cadei, J. Schweizer, S. Bahmani, and A. Alahi, “Towards robust and adaptive motion forecasting: A causal representation perspective,” 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17 060–17 071, 2021.
  17. J. Philion, A. Kar, and S. Fidler, “Learning to evaluate perception models using planner-centric metrics,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
  18. B. Ivanovic and M. Pavone, “Rethinking trajectory forecasting evaluation,” ArXiv, vol. abs/2107.10297, 2021.
  19. B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement learning,” in AAAI, 2008.
  20. G. Swamy, S. Choudhury, J. A. Bagnell, and S. Wu, “Of moments and matching: A game-theoretic framework for closing the imitation gap,” in International Conference on Machine Learning.   PMLR, 2021, pp. 10 022–10 032.
  21. M. Zucker, N. D. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant hamiltonian optimization for motion planning,” The International Journal of Robotics Research, vol. 32, pp. 1164 – 1193, 2013.
  22. C. Chen, Y. Liu, S. Kreiss, and A. Alahi, “Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 6015–6022.
  23. J. P. van den Berg, S. J. Guy, M. C. Lin, and D. Manocha, “Reciprocal n-body collision avoidance,” in International Symposium of Robotics Research, 2011.
  24. S. Pellegrini, A. Ess, K. Schindler, and L. V. Gool, “You’ll never walk alone: Modeling social behavior for multi-target tracking,” 2009 IEEE 12th International Conference on Computer Vision, 2009.
  25. A. Lerner, Y. Chrysanthou, and D. Lischinski, “Crowds by example,” Computer Graphics Forum, vol. 26, 2007.
Citations (4)

Summary

We haven't generated a summary for this paper yet.