Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatiotemporal Receding Horizon Control with Proactive Interaction Towards Autonomous Driving in Dense Traffic (2308.05929v4)

Published 11 Aug 2023 in cs.RO, cs.SY, and eess.SY

Abstract: In dense traffic scenarios, ensuring safety while keeping high task performance for autonomous driving is a critical challenge. To address this problem, this paper proposes a computationally-efficient spatiotemporal receding horizon control (ST-RHC) scheme to generate a safe, dynamically feasible, energy-efficient trajectory in control space, where different driving tasks in dense traffic can be achieved with high accuracy and safety in real time. In particular, an embodied spatiotemporal safety barrier module considering proactive interactions is devised to mitigate the effects of inaccuracies resulting from the trajectory prediction of other vehicles. Subsequently, the motion planning and control problem is formulated as a constrained nonlinear optimization problem, which favorably facilitates the effective use of off-the-shelf optimization solvers in conjunction with multiple shooting. The effectiveness of the proposed ST-RHC scheme is demonstrated through comprehensive comparisons with state-of-the-art algorithms on synthetic and real-world traffic datasets under dense traffic, and the attendant outcome of superior performance in terms of accuracy, efficiency and safety is achieved.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na, Z. Li et al., “Milestones in autonomous driving and intelligent vehicles: Survey of surveys,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1046–1056, 2022.
  2. L. Claussmann, M. Revilloud, D. Gruyer, and S. Glaser, “A review of motion planning for highway autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1826–1848, 2020.
  3. B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.
  4. Y. Chen, G. Li, S. Li, W. Wang, S. E. Li, and B. Cheng, “Exploring behavioral patterns of lane change maneuvers for human-like autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 322–14 335, 2021.
  5. S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and scalable self-driving cars,” arXiv preprint arXiv:1708.06374, 2017.
  6. F. Gao, Y. Han, S. E. Li, S. Xu, and D. Dang, “Accurate pseudospectral optimization of nonlinear model predictive control for high-performance motion planning,” IEEE Transactions on Intelligent Vehicles, vol. 8, no. 2, pp. 1034–1045, 2022.
  7. B. Brito, A. Agarwal, and J. Alonso-Mora, “Learning interaction-aware guidance for trajectory optimization in dense traffic scenarios,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 10, pp. 18 808–18 821, 2022.
  8. J. Chen, S. E. Li, and M. Tomizuka, “Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 6, pp. 5068–5078, 2021.
  9. R. Chandra, U. Bhattacharya, A. Bera, and D. Manocha, “Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8483–8492.
  10. Y. Hu, J. Yang, L. Chen, K. Li, C. Sima, X. Zhu, S. Chai, S. Du, T. Lin, W. Wang et al., “Planning-oriented autonomous driving,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 17 853–17 862.
  11. J. Ma, Z. Cheng, X. Zhang, M. Tomizuka, and T. H. Lee, “Alternating direction method of multipliers for constrained iterative LQR in autonomous driving,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 12, pp. 23 031–23 042, 2022.
  12. Z. Huang, S. Shen, and J. Ma, “Decentralized iLQR for cooperative trajectory planning of connected autonomous vehicles via dual consensus ADMM,” IEEE Transactions on Intelligent Transportation Systems, 2023.
  13. Y. Lin, S. Maierhofer, and M. Althoff, “Sampling-based trajectory repairing for autonomous vehicles,” in IEEE International Conference on Intelligent Transportation Systems, 2021, pp. 572–579.
  14. X. Wang, K. Leung, and M. Pavone, “Infusing reachability-based safety into planning and control for multi-agent interactions,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020, pp. 6252–6259.
  15. M. Werling, S. Kammel, J. Ziegler, and L. Gröll, “Optimal trajectories for time-critical street scenarios using discretized terminal manifolds,” The International Journal of Robotics Research, vol. 31, no. 3, pp. 346–359, 2012.
  16. M. Sharath and N. R. Velaga, “Enhanced intelligent driver model for two-dimensional motion planning in mixed traffic,” Transportation Research Part C: Emerging Technologies, vol. 120, p. 102780, 2020.
  17. C. Miller, C. Pek, and M. Althoff, “Efficient mixed-integer programming for longitudinal and lateral motion planning of autonomous vehicles,” in IEEE Intelligent Vehicles Symposium.   IEEE, 2018, pp. 1954–1961.
  18. Z. Jian, S. Chen, S. Zhang, Y. Chen, and N. Zheng, “Multi-model-based local path planning methodology for autonomous driving: An integrated framework,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 5, pp. 4187–4200, 2020.
  19. Y. Chen, R. Xin, J. Cheng, Q. Zhang, X. Mei, M. Liu, and L. Wang, “Efficient speed planning for autonomous driving in dynamic environment with interaction point model,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 839–11 846, 2022.
  20. W. Xu, Q. Wang, and J. M. Dolan, “Autonomous vehicle motion planning via recurrent spline optimization,” in IEEE International Conference on Robotics and Automation.   IEEE, 2021, pp. 7730–7736.
  21. Z. Han, Y. Wu, T. Li, L. Zhang, L. Pei, L. Xu, C. Li, C. Ma, C. Xu, S. Shen et al., “Differential flatness-based trajectory planning for autonomous vehicles,” arXiv preprint arXiv:2208.13160, 2022.
  22. M. Wang, Z. Wang, J. Talbot, J. C. Gerdes, and M. Schwager, “Game-theoretic planning for self-driving cars in multivehicle competitive scenarios,” IEEE Transactions on Robotics, vol. 37, no. 4, pp. 1313–1325, 2021.
  23. A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022.
  24. Y. Liang, Y. Li, A. Khajepour, Y. Huang, Y. Qin, and L. Zheng, “A novel combined decision and control scheme for autonomous vehicle in structured road based on adaptive model predictive control,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 16 083–16 097, 2022.
  25. L. Zheng, R. Yang, Z. Wu, J. Pan, and H. Cheng, “Safe learning-based gradient-free model predictive control based on cross-entropy method,” Engineering Applications of Artificial Intelligence, vol. 110, p. 104731, 2022.
  26. J. Karlsson, N. Murgovski, and J. Sjöberg, “Computationally efficient autonomous overtaking on highways,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 8, pp. 3169–3183, 2019.
  27. X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 972–983, 2020.
  28. J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive control with discrete-time control barrier function,” in American Control Conference, 2021, pp. 3882–3889.
  29. J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras, “Trajectory distribution control for model predictive path integral control using covariance steering,” in IEEE International Conference on Robotics and Automation.   IEEE, 2022, pp. 1478–1484.
  30. J. Ma, Z. Cheng, X. Zhang, Z. Lin, F. L. Lewis, and T. H. Lee, “Local learning enabled iterative linear quadratic regulator for constrained trajectory planning,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  31. A. Sadat, M. Ren, A. Pokrovsky, Y.-C. Lin, E. Yumer, and R. Urtasun, “Jointly learnable behavior and trajectory planning for self-driving vehicles,” in IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2019, pp. 3949–3956.
  32. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  33. R. Han, S. Wang, S. Wang, Z. Zhang, Q. Zhang, Y. C. Eldar, Q. Hao, and J. Pan, “Rda: An accelerated collision free motion planner for autonomous navigation in cluttered environments,” IEEE Robotics and Automation Letters, vol. 8, no. 3, pp. 1715–1722, 2023.
  34. J. Fu, X. Zhang, Z. Jian, S. Chen, J. Xin, and N. Zheng, “Efficient safety-enhanced velocity planning for autonomous driving with chance constraints,” IEEE Robotics and Automation Letters, vol. 8, no. 6, pp. 3358–3365, 2023.
  35. J. Yin, D. Shen, X. Du, and L. Li, “Distributed stochastic model predictive control with taguchi’s robustness for vehicle platooning,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 15 967–15 979, 2022.
  36. S. H. Nair, V. Govindarajan, T. Lin, C. Meissen, H. E. Tseng, and F. Borrelli, “Stochastic mpc with multi-modal predictions for traffic intersections,” in IEEE International Conference on Intelligent Transportation Systems.   IEEE, 2022, pp. 635–640.
  37. J. P. Alsterda and J. C. Gerdes, “Contingency model predictive control for linear time-varying systems,” arXiv preprint arXiv:2102.12045, 2021.
  38. I. Batkovic, U. Rosolia, M. Zanon, and P. Falcone, “A robust scenario mpc approach for uncertain multi-modal obstacles,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 947–952, 2020.
  39. Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames, “Interactive multi-modal motion planning with branch model predictive control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5365–5372, 2022.
  40. V. K. Adajania, A. Sharma, A. Gupta, H. Masnavi, K. M. Krishna, and A. K. Singh, “Multi-modal model predictive control through batch non-holonomic trajectory optimization: Application to highway driving,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4220–4227, 2022.
  41. P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and variational inequalities,” SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991.
  42. B. Houska, H. Ferreau, and M. Diehl, “ACADO toolkit – An open source framework for automatic control and dynamic optimization,” Optim. Control Appl. Methods, vol. 32, no. 3, pp. 298–312, 2011.
  43. Q. Ge, Q. Sun, S. E. Li, S. Zheng, W. Wu, and X. Chen, “Numerically stable dynamic bicycle model for discrete-time control,” in IEEE Intelligent Vehicles Symposium Workshops (IV Workshops), 2021, pp. 128–134.
  44. H. Chen and F. Allgöwer, “A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability,” Automatica, vol. 34, no. 10, pp. 1205–1217, 1998.
  45. S. Gratton, A. S. Lawless, and N. K. Nichols, “Approximate Gauss–Newton methods for nonlinear least squares problems,” SIAM Journal on Optimization, vol. 18, no. 1, pp. 106–132, 2007.
Citations (3)

Summary

We haven't generated a summary for this paper yet.