Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Strategic Decision-Making in Multi-Agent Domains: A Weighted Potential Dynamic Game Approach (2308.05876v2)

Published 10 Aug 2023 in cs.RO

Abstract: In interactive multi-agent settings, decision-making complexity arises from agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving dynamic games and determining Nash equilibria pose computational challenges due to the need of solving coupled optimal control problems. To address this, our key idea is to leverage potential games, which are games with a potential function that allows for the computation of Nash equilibria by optimizing the potential function. We argue that dynamic potential games, can effectively facilitate interactive decision-making in many multi-agent interactions. We will identify structures in realistic multi-agent interactive scenarios that can be transformed into weighted potential dynamic games. We will show that the open-loop Nash equilibria of the resulting weighted potential dynamic game can be obtained by solving a single optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies, showing close proximity to feedback Nash equilibria and significant improvements in solve time compared to state-of-the-art game solvers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Maulik Bhatt (13 papers)
  2. Negar Mehr (36 papers)