Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identically distributed random vectors on locally compact Abelian groups (2308.05694v1)

Published 10 Aug 2023 in math.PR, math.ST, and stat.TH

Abstract: L. Klebanov proved the following theorem. Let $\xi_1, \dots, \xi_n$ be independent random variables. Consider linear forms $L_1=a_1\xi_1+\cdots+a_n\xi_n,$ $L_2=b_1\xi_1+\cdots+b_n\xi_n,$ $L_3=c_1\xi_1+\cdots+c_n\xi_n,$ $L_4=d_1\xi_1+\cdots+d_n\xi_n,$ where the coefficients $a_j, b_j, c_j, d_j$ are real numbers. If the random vectors $(L_1,L_2)$ and $(L_3,L_4)$ are identically distributed, then all $\xi_i$ for which $a_id_j-b_ic_j\neq 0$ for all $j=\overline{1,n}$ are Gaussian random variables. The present article is devoted to an analog of the Klebanov theorem in the case when random variables take values in a locally compact Abelian group and the coefficients of the linear forms are integers.

Summary

We haven't generated a summary for this paper yet.