Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Universality in the number variance and counting statistics of the real and symplectic Ginibre ensemble (2308.05519v3)

Published 10 Aug 2023 in math-ph, cond-mat.stat-mech, math.MP, and math.PR

Abstract: In this article, we compute and compare the statistics of the number of eigenvalues in a centred disc of radius $R$ in all three Ginibre ensembles. We determine the mean and variance as functions of $R$ in the vicinity of the origin, where the real and symplectic ensembles exhibit respectively an additional attraction to or repulsion from the real axis, leading to different results. In the large radius limit, all three ensembles coincide and display a universal bulk behaviour of $O(R2)$ for the mean, and $O(R)$ for the variance. We present detailed conjectures for the bulk and edge scaling behaviours of the real Ginibre ensemble, having real and complex eigenvalues. For the symplectic ensemble we can go beyond the Gaussian case (corresponding to the Ginibre ensemble) and prove the universality of the full counting statistics both in the bulk and at the edge of the spectrum for rotationally invariant potentials, extending a recent work which considered the mean and the variance. This statistical behaviour coincides with the universality class of the complex Ginibre ensemble, which has been shown to be associated with the ground state of non-interacting fermions in a two-dimensional rotating harmonic trap. All our analytical results and conjectures are corroborated by numerical simulations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.