Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Adaptive Algorithm Based on Stochastic Discontinuous Galerkin for Convection Dominated Equations with Random Data (2308.05500v3)

Published 10 Aug 2023 in math.NA and cs.NA

Abstract: In this paper, we propose an adaptive approach, based on mesh refinement or parametric enrichment with polynomial degree adaption, for numerical solution of convection dominated equations with random input data. A parametric system emerged from an application of stochastic Galerkin approach is discretized by using symmetric interior penalty Galerkin (SIPG) method with upwinding for the convection term in the spatial domain. We derive a residual-based error estimator contributed by the error due to the SIPG discretization, the (generalized) polynomial chaos discretization in the stochastic space, and data oscillations. Then, the reliability of the proposed error estimator, an upper bound for the energy error up to a multiplicative constant, is shown. Moreover, to balance the errors stemmed from spatial and stochastic spaces, the truncation error emerged from Karhunen--Lo`{e}ve expansion are considered in the numerical simulations. Last, several benchmark examples including a random diffusivity parameter, a random convectivity parameter, random diffusivity/convectivity parameters, and a random (jump) discontinuous diffusivity parameter, are tested to illustrate the performance of the proposed estimator.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Delhomme JP. Spatial variability and uncertainity in groundwater flow parameters: A geostatistical approach. Water Resourc. Res.. 1979:269–280.
  2. Zhang D, Kang Q. Pore scale simulation of solute transport in fractured porous media. Geophys. Res. Lett.. 2004;31:L12504.
  3. Kleiber M, Hien TD. The Stochastic Finite Element Method: Basic perturbation technique and computer implementation. Wiley, 1992.
  4. Babuška I, Chatzipantelidis P. On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Engrg.. 2002;191(37-38):4093–4122.
  5. Schwab C, Gittelson CJ. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer.. 2011;20:291-467.
  6. Babuška I, Rheinboldt WC. Error estimates for adaptive finite element computations. SIAM J. Numer. Anal.. 1978;15:736-754.
  7. Ainsworth M, Oden JT. A posteriori error estimation in finite element analysis. Pure and Applied MathematicsNew York: John Wiley & Sons, 2000.
  8. Verfürth R. A Review of A Posteriori Error Estimation and Adaptive Mesh–Refinement Techniques. Wiley-Teubner Series: Advances in Numerical MathematicsChicester, New York, Stuttgart: Wiley Teubner, 1996.
  9. Wan X, Karniadakis GE. Error control in multi–element generalized polynomial choas method for elliptic problems with random coefficients. Commun. Comput. Phys.. 2009;5:793–820.
  10. Mathelin L, Maître OL. Dual–based a posteriori error estimate for stochastic finite element methods. Commun. Appl. Math. Comput. Sci.. 2007;2:83–115.
  11. Eigel M, Merdon C. Local equilibration error estimators for guaranteed error control in adaptive stochastic higher–order Galerkin finite elements. SIAM-ASA J. Uncertain. Quantif.. 2016;4:132–1397.
  12. Bespalov A, Rocchi L. Efficient Adaptive Algorithms for Elliptic PDEs with Random Data. SIAM-ASA J. Uncertain. Quantif.. 2018;6(1):243-272.
  13. Bespalov A, Silvester D. Efficient Adaptive Stochastic Galerkin Methods for Parametric Operator Equations. SIAM J. Sci. Comput.. 2016;38(4):A2118-A2140.
  14. Gittelson CJ. An adaptive stochastic Galerkin method. Math. Comp.. 2011;82:1515–1541.
  15. Barth A, Stein A. A study of elliptic partial differential equations with jump diffusion coefficients. SIAM/ASA J. Uncertain. Quantif.. 2018;56:1707–1743.
  16. Barth A, Stein A. Numerical analysis for time-dependent advection diffusion problems with random discontinuous coefficients. ESAIM: M2AN. 2022;56(5):1545–1578.
  17. Karhunen K. Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys.. 1947;1947(37):79.
  18. Loève M. Fonctions aléatoires de second ordre. Revue Sci.. 1946;84:195–206.
  19. Powell CE, Elman HC. Block–diagonal preconditioning for spectral stochastic finite–element systems. IMA J. Numer. Anal.. 2009;29(2):350–375.
  20. Øksendal B. Stochastic Differential Equations. Berlin: Springer-Verlag, 2003.
  21. New York: Cambridge University Press, 2014.
  22. Xiu D, Karniadakis GE. The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations. SIAM J. Sci. Comput.. 2002;24(2):619–644.
  23. Koekoek R, Lesky PA. Hypergeometric Orthogonal Polynomials and Their q–Analogues. Springer-Verlag, 2010.
  24. Rivière B. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. Frontiers in Applied MathematicsPhiladelphia: SIAM, 2008.
  25. Schötzau D, Zhu L. A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math.. 2009;59(9):2236–2255.
  26. Ciarlet PG. The Finite Element Method for Elliptic Problems. 40 of Classics Appl. Math. Philadelphia, PA: SIAM, 2002.
  27. Scott LR, Zhang S. Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp.. 1990;54:483–493.
  28. Karakashian OA, Pascal F. Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems. SIAM J. Numer. Anal.. 2007;45(2):641–665.
  29. Cai Z, Zhang S. Recovery–based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal.. 2009;47:2132–2156.
  30. Çi̇loğlu P, Yücel H. Stochastic discontinuous Galerkin methods with low-rank solvers for convection diffusion equations. Appl. Numer. Math.. 2022;172:157-185.

Summary

We haven't generated a summary for this paper yet.