Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algebraic characterization of the affine three space in arbitrary characteristic (2308.05424v4)

Published 10 Aug 2023 in math.AC and math.AG

Abstract: We give an algebraic characterization of the affine $3$-space over an algebraically closed field of arbitrary characteristic. We use this characterization to reformulate the following question. Let $$A=k[X, Y, Z, T]/(XY+Z{pe}+T+T{sp})$$ where $pe\nmid sp$, $sp\nmid pe$, $e, s\geq 1$ and $k$ is an algebraically closed field of positive characteristic $p$. Is $A= k{[3]}$? We prove some results on ML and ML$*$ invariants and use them to prove a special case of the strong cancellation of $k{[2]}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. On the uniqueness of the coefficient ring in a polynomial ring. J. Algebra, 23:310–342, 1972.
  2. T. Asanuma. Polynomial fibre rings of algebras over noetherian rings. Invent. Math., 87:101–127, 1987.
  3. T. Asanuma. Non-linearizable algebraic group actions on 𝔸nsuperscript𝔸𝑛\mathbb{A}^{n}blackboard_A start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. J. Algebra, 166(1):72–79, 1994.
  4. S. M. Bhatwadekar and N. Gupta. A note on the cancellation property of k⁢[X,Y]𝑘𝑋𝑌k[X,Y]italic_k [ italic_X , italic_Y ]. J. Algebra Appl., 14(9):5, 2015. Id/No 1540007.
  5. A. Crachiola and L. Makar-Limanov. On the rigidity of small domains. J. Algebra, 284(1):1–12, 2005.
  6. A. J. Crachiola. Cancellation for two-dimensional unique factorization domains. J. Pure Appl. Algebra, 213(9):1735–1738, 2009.
  7. An algebraic proof of a cancellation theorem for surfaces. J. Algebra, 320(8):3113–3119, 2008.
  8. N. Dasgupta and N. Gupta. An algebraic characterization of the affine three space. J. Commut. Algebra, 13(3):333–345, 2021.
  9. G. Freudenburg. Algebraic theory of locally nilpotent derivations, volume 136 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. Invariant Theory and Algebraic Transformation Groups, VII.
  10. G. Freudenburg. Algebraic theory of locally nilpotent derivations, volume 136 of Encycl. Math. Sci. Berlin: Springer, 2nd enlarged edition edition, 2017.
  11. S. Gaifullin and A. Shafarevich. Modified Makar-Limanov and Derksen invariants. J. Pure Appl. Algebra, 228(6):Paper No. 107616, 10, 2024.
  12. N. Gupta. On the cancellation problem for the affine space 𝔸3superscript𝔸3\mathbb{A}^{3}blackboard_A start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT in characteristic p𝑝pitalic_p. Invent. Math., 195(1):279–288, 2014.
  13. N. Gupta. On the family of affine threefolds xm⁢y=F⁢(x,z,t)superscript𝑥𝑚𝑦𝐹𝑥𝑧𝑡x^{m}y=F(x,z,t)italic_x start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT italic_y = italic_F ( italic_x , italic_z , italic_t ). Compos. Math., 150(6):979–998, 2014.
  14. N. Gupta. On Zariski’s cancellation problem in positive characteristic. Adv. Math., 264:296–307, 2014.
  15. T. Kambayashi. On the absence of nontrivial separable forms of the affine plane. J. Algebra, 35:449–456, 1975.
  16. H. Kojima. Notes on the kernels of locally finite higher derivations in polynomial rings. Commun. Algebra, 44(5):1924–1930, 2016.
  17. H. Kojima and N. Wada. Kernels of higher derivations in R⁢[x,y]𝑅𝑥𝑦R[x,y]italic_R [ italic_x , italic_y ]. Comm. Algebra, 39(5):1577–1582, 2011.
  18. S. Kuroda. A generalization of Nakai’s theorem on locally finite iterative higher derivations. Osaka J. Math., 54(2):335–341, 2017.
  19. L. Makar-Limanov. On the hypersurface x+x2⁢y+z2+t3=0𝑥superscript𝑥2𝑦superscript𝑧2superscript𝑡30x+x^{2}y+z^{2}+t^{3}=0italic_x + italic_x start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_y + italic_z start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_t start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT = 0 in ℂ4superscriptℂ4\mathbb{C}^{4}blackboard_C start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT or a ℂ3superscriptℂ3\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT-like threefold which is not ℂ3superscriptℂ3\mathbb{C}^{3}blackboard_C start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Isr. J. Math., 96:419–429, 1996.
  20. M. Miyanishi. An algebraic characterization of the affine plane. J. Math. Kyoto Univ., 15:169–184, 1975.
  21. P. Russell. On affine-ruled rational surfaces. Math. Ann., 255:287–302, 1981.

Summary

We haven't generated a summary for this paper yet.