Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DOST -- Domain Obedient Self-supervised Training for Multi Label Classification with Noisy Labels (2308.05101v1)

Published 9 Aug 2023 in cs.LG and cs.AI

Abstract: The enormous demand for annotated data brought forth by deep learning techniques has been accompanied by the problem of annotation noise. Although this issue has been widely discussed in machine learning literature, it has been relatively unexplored in the context of "multi-label classification" (MLC) tasks which feature more complicated kinds of noise. Additionally, when the domain in question has certain logical constraints, noisy annotations often exacerbate their violations, making such a system unacceptable to an expert. This paper studies the effect of label noise on domain rule violation incidents in the MLC task, and incorporates domain rules into our learning algorithm to mitigate the effect of noise. We propose the Domain Obedient Self-supervised Training (DOST) paradigm which not only makes deep learning models more aligned to domain rules, but also improves learning performance in key metrics and minimizes the effect of annotation noise. This novel approach uses domain guidance to detect offending annotations and deter rule-violating predictions in a self-supervised manner, thus making it more "data efficient" and domain compliant. Empirical studies, performed over two large scale multi-label classification datasets, demonstrate that our method results in improvement across the board, and often entirely counteracts the effect of noise.

Citations (1)

Summary

We haven't generated a summary for this paper yet.