Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exploring Multilingual Text Data Distillation (2308.04982v1)

Published 9 Aug 2023 in cs.CL and cs.AI

Abstract: With the rise of deep learning, large datasets and complex models have become common, requiring significant computing power. To address this, data distillation has emerged as a technique to quickly train models with lower memory and time requirements. However, data distillation on text-based datasets hasn't been explored much because of the challenges rising due to its discrete nature. Additionally, existing dataset distillation methods often struggle to generalize to new architectures. In the paper, we propose several data distillation techniques for multilingual text classification datasets using language-model-based learning methods. We conduct experiments to analyze their performance in terms of classification strength, and cross-architecture generalization. Furthermore, we investigate the language-specific fairness of the data summaries generated by these methods. Our approach builds upon existing techniques, enhancing cross-architecture generalization in the text data distillation domain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shivam Sahni (5 papers)
  2. Harsh Patel (17 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.